Suppr超能文献

P小体成分GW182在微小RNA功能中的作用。

A role for the P-body component GW182 in microRNA function.

作者信息

Liu Jidong, Rivas Fabiola V, Wohlschlegel James, Yates John R, Parker Roy, Hannon Gregory J

机构信息

Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Howard Hughes Medical Institute, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.

出版信息

Nat Cell Biol. 2005 Dec;7(12):1261-6. doi: 10.1038/ncb1333. Epub 2005 Nov 13.

Abstract

In animals, the majority of microRNAs regulate gene expression through the RNA interference (RNAi) machinery without inducing small-interfering RNA (siRNA)-directed mRNA cleavage. Thus, the mechanisms by which microRNAs repress their targets have remained elusive. Recently, Argonaute proteins, which are key RNAi effector components, and their target mRNAs were shown to localize to cytoplasmic foci known as P-bodies or GW-bodies. Here, we show that the Argonaute proteins physically interact with a key P-/GW-body subunit, GW182. Silencing of GW182 delocalizes resident P-/GW-body proteins and impairs the silencing of microRNA reporters. Moreover, mutations that prevent Argonaute proteins from localizing in P-/GW-bodies prevent translational repression of mRNAs even when Argonaute is tethered to its target in a siRNA-independent fashion. Thus, our results support a functional link between cytoplasmic P-bodies and the ability of a microRNA to repress expression of a target mRNA.

摘要

在动物中,大多数微小RNA通过RNA干扰(RNAi)机制调节基因表达,而不会诱导小干扰RNA(siRNA)介导的mRNA切割。因此,微小RNA抑制其靶标的机制仍然不清楚。最近,作为关键RNAi效应成分的AGO蛋白及其靶标mRNA被证明定位于称为P小体或GW小体的细胞质焦点。在这里,我们表明AGO蛋白与关键的P-/GW-体亚基GW182发生物理相互作用。GW182的沉默使驻留的P-/GW-体蛋白发生异位,并损害微小RNA报告基因的沉默。此外,阻止AGO蛋白定位于P-/GW-体的突变会阻止mRNA的翻译抑制,即使AGO以不依赖siRNA的方式与靶标相连。因此,我们的结果支持细胞质P小体与微小RNA抑制靶标mRNA表达能力之间的功能联系。

相似文献

1
A role for the P-body component GW182 in microRNA function.
Nat Cell Biol. 2005 Dec;7(12):1261-6. doi: 10.1038/ncb1333. Epub 2005 Nov 13.
2
Disruption of GW bodies impairs mammalian RNA interference.
Nat Cell Biol. 2005 Dec;7(12):1267-74. doi: 10.1038/ncb1334. Epub 2005 Nov 13.
3
MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies.
Nat Cell Biol. 2005 Jul;7(7):719-23. doi: 10.1038/ncb1274. Epub 2005 Jun 5.
6
Small interfering RNA-mediated silencing induces target-dependent assembly of GW/P bodies.
Mol Biol Cell. 2007 Sep;18(9):3375-87. doi: 10.1091/mbc.e07-01-0070. Epub 2007 Jun 27.
7
Mapping of Ago2-GW182 functional interactions.
Methods Mol Biol. 2011;725:45-62. doi: 10.1007/978-1-61779-046-1_4.
8
Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody.
J Immunol Methods. 2006 Dec 20;317(1-2):38-44. doi: 10.1016/j.jim.2006.09.010. Epub 2006 Oct 4.
10
Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies.
Nat Cell Biol. 2005 Jun;7(6):633-6. doi: 10.1038/ncb1265. Epub 2005 May 22.

引用本文的文献

1
SON-dependent nuclear speckle rehabilitation alleviates proteinopathies.
Nat Commun. 2025 Aug 5;16(1):7065. doi: 10.1038/s41467-025-62242-7.
2
C-terminal tagging impairs AGO2 function.
RNA Biol. 2025 Dec;22(1):1-24. doi: 10.1080/15476286.2025.2534028. Epub 2025 Jul 23.
4
Dipeptidyl peptidase DPF-3 is a gatekeeper of microRNA Argonaute compensation in animals.
Nat Commun. 2025 Mar 20;16(1):2738. doi: 10.1038/s41467-025-58141-6.
5
Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application.
Biomolecules. 2024 Aug 6;14(8):952. doi: 10.3390/biom14080952.
6
Cytoplasmic nucleoporin assemblage: the cellular artwork in physiology and disease.
Nucleus. 2024 Dec;15(1):2387534. doi: 10.1080/19491034.2024.2387534. Epub 2024 Aug 12.
8
Argonaute protein CSR-1 restricts localization of holocentromere protein HCP-3, the C. elegans CENP-A homolog.
J Cell Sci. 2024 Sep 15;137(18). doi: 10.1242/jcs.261895. Epub 2024 Sep 18.
9
SON-dependent nuclear speckle rejuvenation alleviates proteinopathies.
bioRxiv. 2024 Oct 17:2024.04.18.590103. doi: 10.1101/2024.04.18.590103.
10
Ago2/CAV1 interaction potentiates metastasis via controlling Ago2 localization and miRNA action.
EMBO Rep. 2024 May;25(5):2441-2478. doi: 10.1038/s44319-024-00132-7. Epub 2024 Apr 22.

本文引用的文献

1
General translational repression by activators of mRNA decapping.
Cell. 2005 Sep 23;122(6):875-86. doi: 10.1016/j.cell.2005.07.012.
2
A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing.
RNA. 2005 Nov;11(11):1640-7. doi: 10.1261/rna.2191905. Epub 2005 Sep 21.
3
Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation.
Cell. 2005 Aug 26;122(4):553-63. doi: 10.1016/j.cell.2005.07.031.
5
Inhibition of translational initiation by Let-7 MicroRNA in human cells.
Science. 2005 Sep 2;309(5740):1573-6. doi: 10.1126/science.1115079. Epub 2005 Aug 4.
6
TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.
Nature. 2005 Aug 4;436(7051):740-4. doi: 10.1038/nature03868. Epub 2005 Jun 22.
7
MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies.
Nat Cell Biol. 2005 Jul;7(7):719-23. doi: 10.1038/ncb1274. Epub 2005 Jun 5.
8
Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies.
Nat Cell Biol. 2005 Jun;7(6):633-6. doi: 10.1038/ncb1265. Epub 2005 May 22.
10
Processing bodies require RNA for assembly and contain nontranslating mRNAs.
RNA. 2005 Apr;11(4):371-82. doi: 10.1261/rna.7258505. Epub 2005 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验