Hua Gang, Wu Ying
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA.
IEEE Trans Pattern Anal Mach Intell. 2005 Nov;27(11):1747-61. doi: 10.1109/TPAMI.2005.229.
This paper proposes a novel probabilistic variational method with deterministic annealing for the maximum a posteriori (MAP) estimation of complex stochastic systems. Since the MAP estimation involves global optimization, in general, it is very difficult to achieve. Therefore, most probabilistic inference algorithms are only able to achieve either the exact or the approximate posterior distributions. Our method constrains the mean field variational distribution to be multivariate Gaussian. Then, a deterministic annealing scheme is nicely incorporated into the mean field fix-point iterations to obtain the optimal MAP estimate. This is based on the observation that when the covariance of the variational Gaussian distribution approaches to zero, the infimum point of the Kullback-Leibler (KL) divergence between the variational Gaussian and the real posterior will be the same as the supreme point of the real posterior. Although global optimality may not be guaranteed, our extensive synthetic and real experiments demonstrate the effectiveness and efficiency of the proposed method.
本文提出了一种新颖的带有确定性退火的概率变分方法,用于复杂随机系统的最大后验(MAP)估计。由于MAP估计涉及全局优化,一般来说很难实现。因此,大多数概率推理算法只能获得精确的或近似的后验分布。我们的方法将平均场变分分布约束为多元高斯分布。然后,将确定性退火方案巧妙地纳入平均场不动点迭代中,以获得最优的MAP估计。这是基于这样的观察:当变分高斯分布的协方差趋近于零时,变分高斯分布与真实后验之间的Kullback-Leibler(KL)散度的下确界点将与真实后验的上确界点相同。尽管不能保证全局最优性,但我们广泛的合成实验和实际实验证明了所提方法的有效性和效率。