Constantinopoulos Constantinos, Titsias Michalis K, Likas Aristidis
Department of Computer Science, University of Ioannina, Ioannina GR 45110, Greece.
IEEE Trans Pattern Anal Mach Intell. 2006 Jun;28(6):1013-8. doi: 10.1109/TPAMI.2006.111.
We present a Bayesian method for mixture model training that simultaneously treats the feature selection and the model selection problem. The method is based on the integration of a mixture model formulation that takes into account the saliency of the features and a Bayesian approach to mixture learning that can be used to estimate the number of mixture components. The proposed learning algorithm follows the variational framework and can simultaneously optimize over the number of components, the saliency of the features, and the parameters of the mixture model. Experimental results using high-dimensional artificial and real data illustrate the effectiveness of the method.
我们提出了一种用于混合模型训练的贝叶斯方法,该方法同时处理特征选择和模型选择问题。该方法基于一种混合模型公式的集成,该公式考虑了特征的显著性,以及一种用于混合学习的贝叶斯方法,可用于估计混合成分的数量。所提出的学习算法遵循变分框架,并且可以同时在成分数量、特征的显著性以及混合模型的参数上进行优化。使用高维人工数据和真实数据的实验结果说明了该方法的有效性。