Suppr超能文献

DNA中Hoogsteen - 沃森 - 克里克连接的理论研究。

Theoretical study of the Hoogsteen-Watson-Crick junctions in DNA.

作者信息

Cubero Elena, Luque F Javier, Orozco Modesto

机构信息

Molecular Modelling & Bioinformatic Unit, Institut de Recerca Biomèdica-Parc Científic de Barcelona, Barcelona 08028, Spain.

出版信息

Biophys J. 2006 Feb 1;90(3):1000-8. doi: 10.1529/biophysj.105.059535. Epub 2005 Nov 11.

Abstract

A series of d (AT)(n) oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation.

摘要

一系列包含正常B型沃森-克里克螺旋和反平行 hoogsteen螺旋混合物的d(AT)(n)寡核苷酸已通过分子动力学模拟技术进行研究,以分析沃森-克里克结构和反平行hoogsteen结构之间连接的结构和热力学影响。分子动力学模拟分析强烈表明,对于所有研究的寡核苷酸,反平行hoogsteen呈现为一种合理的构象,其稳定性仅略低于典型的B型沃森-克里克构象。沃森-克里克结构和hoogsteen结构之间的连接先验地在螺旋中引入了明显的不连续性,因为每种构象类型的特性在相应片段中得到了很好的保留。然而,非常违反直觉的是,连接在结构、动力学或能量方面并没有很大程度地扭曲双链体。我们的结果有力地支持了反平行hoogsteen双链体的小片段可能嵌入到B型沃森-克里克螺旋的大片段中的可能性,从而使得反平行hoogsteen构象特有的蛋白质-DNA相互作用成为可能。

相似文献

1
Theoretical study of the Hoogsteen-Watson-Crick junctions in DNA.
Biophys J. 2006 Feb 1;90(3):1000-8. doi: 10.1529/biophysj.105.059535. Epub 2005 Nov 11.
2
A novel DNA duplex. A parallel-stranded DNA helix with Hoogsteen base pairing.
Biochemistry. 1993 Nov 9;32(44):11802-9. doi: 10.1021/bi00095a008.
3
Theoretical study of a new DNA structure: the antiparallel Hoogsteen duplex.
J Am Chem Soc. 2003 Nov 26;125(47):14603-12. doi: 10.1021/ja035918f.
6
Antiparallel triple helices. Structural characteristics and stabilization by 8-amino derivatives.
J Am Chem Soc. 2003 Dec 24;125(51):16127-38. doi: 10.1021/ja035039t.
7
Theoretical studies of d(A:T)-based parallel-stranded DNA duplexes.
J Am Chem Soc. 2001 Dec 5;123(48):12018-25. doi: 10.1021/ja011200t.
8
Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
Acc Chem Res. 2021 May 4;54(9):2110-2120. doi: 10.1021/acs.accounts.0c00734. Epub 2021 Feb 16.
9
Modulation of Hoogsteen dynamics on DNA recognition.
Nat Commun. 2018 Apr 16;9(1):1473. doi: 10.1038/s41467-018-03516-1.
10
Structural polymorphism in d(T)12.d(A)12*d(T)12 triple helices.
J Biomol Struct Dyn. 1995 Dec;13(3):493-505. doi: 10.1080/07391102.1995.10508859.

引用本文的文献

2
Force-Field-Dependent DNA Breathing Dynamics: A Case Study of Hoogsteen Base Pairing in A6-DNA.
J Chem Inf Model. 2022 Dec 26;62(24):6749-6761. doi: 10.1021/acs.jcim.2c00519. Epub 2022 Sep 1.
3
Transient Hoogsteen Base Pairs Observed in Unbiased Molecular Dynamics Simulations of DNA.
J Phys Chem Lett. 2022 Jul 14;13(27):6283-6287. doi: 10.1021/acs.jpclett.2c01348. Epub 2022 Jul 1.
4
Slow motions in A·T rich DNA sequence.
Sci Rep. 2020 Nov 4;10(1):19005. doi: 10.1038/s41598-020-75645-x.
5
Design strategies for programmable oligonucleotide nanotherapeutics.
Drug Discov Today. 2020 Jan;25(1):73-88. doi: 10.1016/j.drudis.2019.09.006. Epub 2019 Sep 13.
6
Design strategies for physical-stimuli-responsive programmable nanotherapeutics.
Drug Discov Today. 2018 May;23(5):992-1006. doi: 10.1016/j.drudis.2018.04.003. Epub 2018 Apr 10.
7
New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey.
Nucleic Acids Res. 2015 Apr 20;43(7):3420-33. doi: 10.1093/nar/gkv241. Epub 2015 Mar 26.

本文引用的文献

1
Exploring the Essential Dynamics of B-DNA.
J Chem Theory Comput. 2005 Sep;1(5):790-800. doi: 10.1021/ct050051s.
2
A Proposed Structure For The Nucleic Acids.
Proc Natl Acad Sci U S A. 1953 Feb;39(2):84-97. doi: 10.1073/pnas.39.2.84.
3
The relative flexibility of B-DNA and A-RNA duplexes: database analysis.
Nucleic Acids Res. 2004 Nov 23;32(20):6144-51. doi: 10.1093/nar/gkh954. Print 2004.
4
Ion motions in molecular dynamics simulations on DNA.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14771-5. doi: 10.1073/pnas.0406435101. Epub 2004 Oct 1.
5
Relative flexibility of DNA and RNA: a molecular dynamics study.
J Mol Biol. 2004 Oct 22;343(3):627-38. doi: 10.1016/j.jmb.2004.07.048.
7
X-ray and NMR studies of the DNA oligomer d(ATATAT): Hoogsteen base pairing in duplex DNA.
Biochemistry. 2004 Apr 13;43(14):4092-100. doi: 10.1021/bi0355140.
8
Theoretical methods for the simulation of nucleic acids.
Chem Soc Rev. 2003 Nov;32(6):350-64. doi: 10.1039/b207226m.
9
Theoretical study of a new DNA structure: the antiparallel Hoogsteen duplex.
J Am Chem Soc. 2003 Nov 26;125(47):14603-12. doi: 10.1021/ja035918f.
10
X-ray studies on two synthetic DNA copolymers.
J Mol Biol. 1963 Apr;6:251-5. doi: 10.1016/s0022-2836(63)80086-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验