Department of Chemistry, University of California Irvine, Irvine, California 92697, United States.
Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States.
J Chem Inf Model. 2022 Dec 26;62(24):6749-6761. doi: 10.1021/acs.jcim.2c00519. Epub 2022 Sep 1.
The Hoogsteen (HG) base pairing conformation, commonly observed in damaged and mutated DNA helices, facilitates DNA repair and DNA recognition. The free energy difference between HG and Watson-Crick (WC) base pairs has been computed in previous studies. However, the mechanism of the conformational transition is not well understood. A detailed understanding of the process of WC to HG base pair transition can provide a deeper understanding of DNA repair and recognition. In an earlier study, we explored the free energy landscape for this process using extensive computer simulation with the CHARMM36 force field. In this work, we study the impact of force field models in describing the WC to HG base pairing transition using meta-eABF enhanced sampling, quasi-harmonic entropy calculation, and nonbonded energy analysis. The secondary structures of both base pairing forms and the topology of the free energy landscapes were consistent over different force field models, although the relative free energy, entropy, and the interaction energies tend to vary. The relative stability of the WC and HG conformations is dictated by a delicate balance between the enthalpic stabilization and the reduced entropy of the structurally rigid HG structure. These findings highlight the impact that subtleties in force field models can have on accurately modeling DNA base pair dynamics and should stimulate further computational investigations into other dynamically important motions in DNA.
Hoogsteen(HG)碱基配对构象在受损和突变的 DNA 螺旋中很常见,有助于 DNA 修复和 DNA 识别。在以前的研究中已经计算了 HG 和 Watson-Crick(WC)碱基对之间的自由能差异。然而,构象转变的机制尚不清楚。详细了解 WC 到 HG 碱基对转变的过程可以深入了解 DNA 修复和识别。在早期的研究中,我们使用 CHARMM36 力场进行了广泛的计算机模拟,探索了这个过程的自由能景观。在这项工作中,我们使用元增强抽样(meta-eABF)、准谐熵计算和非键相互作用能分析研究了力场模型在描述 WC 到 HG 碱基配对转变中的影响。不同力场模型下,两种碱基配对形式的二级结构和自由能景观的拓扑结构是一致的,尽管相对自由能、熵和非键相互作用能会发生变化。WC 和 HG 构象的相对稳定性是由 HG 结构的结构刚性导致的焓稳定化和熵降低之间的微妙平衡决定的。这些发现强调了力场模型中的细微差别会对准确模拟 DNA 碱基对动力学产生影响,并应激发对 DNA 中其他动态重要运动的进一步计算研究。