Suppr超能文献

兴奋性和抑制性模型神经元网络中的瞬态信息流:噪声和信号自相关的作用

Transient information flow in a network of excitatory and inhibitory model neurons: role of noise and signal autocorrelation.

作者信息

Mayor Julien, Gerstner Wulfram

机构信息

School of Computer and Communication Sciences and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

出版信息

J Physiol Paris. 2004 Jul-Nov;98(4-6):417-28. doi: 10.1016/j.jphysparis.2005.09.009. Epub 2005 Nov 10.

Abstract

We investigate the performance of sparsely-connected networks of integrate-and-fire neurons for ultra-short term information processing. We exploit the fact that the population activity of networks with balanced excitation and inhibition can switch from an oscillatory firing regime to a state of asynchronous irregular firing or quiescence depending on the rate of external background spikes. We find that in terms of information buffering the network performs best for a moderate, non-zero, amount of noise. Analogous to the phenomenon of stochastic resonance the performance decreases for higher and lower noise levels. The optimal amount of noise corresponds to the transition zone between a quiescent state and a regime of stochastic dynamics. This provides a potential explanation of the role of non-oscillatory population activity in a simplified model of cortical micro-circuits.

摘要

我们研究了用于超短期信息处理的稀疏连接积分发放神经元网络的性能。我们利用了这样一个事实,即具有平衡兴奋和抑制的网络的群体活动可以根据外部背景脉冲的速率从振荡发放状态切换到异步不规则发放或静止状态。我们发现,在信息缓冲方面,网络在适度的非零噪声量下表现最佳。类似于随机共振现象,在更高和更低的噪声水平下性能会下降。最佳噪声量对应于静止状态和随机动力学状态之间的过渡区域。这为非振荡群体活动在皮质微电路简化模型中的作用提供了一个潜在的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验