O'Leary Patrick, Nicolakis Michael, Lorenz Mark A, Voronov Leonard I, Zindrick Michael R, Ghanayem Alexander, Havey Robert M, Carandang Gerard, Sartori Mark, Gaitanis Ioannis N, Fronczak Stanley, Patwardhan Avinash G
Musculoskeletal Biomechanics Laboratory, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, 5th Ave. and Roosevelt Rd., Hines, IL 60141, USA.
Spine J. 2005 Nov-Dec;5(6):590-9. doi: 10.1016/j.spinee.2005.06.015.
Total disc replacement (TDR) has been recommended to reduce pain of presumed discogenic origin while preserving spinal motion. The floating core of Charité TDR is professed to allow the replication of the kinematics of a healthy disc under physiologic loads. While segmental motion after Charité TDR has been measured, little is known about the effects of a physiologic compressive preload on vertebral motion and the motion of prosthesis components after TDR.
(1) Does Charité TDR allow restoration of normal load-displacement behavior of a lumbar motion segment under physiologic loads? (2) How do the prosthesis components move relative to each other under physiologic loads when implanted in a lumbar motion segment?
A biomechanical study using human lumbar spines (L1-sacrum).
Five lumbar spines (age: 52+/-9.3) were used. Specimens were tested under flexion (8 Nm) and extension (6 Nm) moments with compressive follower preloads of 0 N and 400 N in the following sequence: (i) intact, (ii) Charité TDR at L5-S1, (iii) simulated healed fusion at L5-S1 with Charité TDR at L4-L5. Segmental motion was measured optoelectronically. Motions between prosthesis end plates and core were visually assessed using sequential digital video-fluoroscopy over the full range of motion. Here we report on kinematics of 10 Charité TDRs: 5 at L5-S1 and 5 at L4-L5.
Charité TDR increased the flexion-extension range of motion of lumbar segments (p<.05). At 400 N preload, the range of motion increased from intact values of 6.8+/-4.4 to 10.0+/-2.4 degrees at L5-S1 and from 7.0+/-2.6 to 10.8+/-2.9 degrees at L4-L5. Charité TDR increased segmental lordosis by 8.1+/-6.9 degrees at L5-S1 (p<.05) and 5.4+/-3.5 degrees at L4-L5 (p<.05). Four patterns of prosthesis component motion were noted: (1) angular motion only between the upper end plate and core, with little or no visual evidence of core translation (9 of 10 TDRs at 0 N preload and 5 of 10 TDRs at 400 N preload); (2) lift-off of upper prosthesis end plate from core or of core from lower end plate (observed in extension in 9 of 10 TDRs under 0 N preload only); (3) core entrapment, resulting in a locked core over a portion of the range of motion (observed in extension in 8 of 10 TDRs under 400 N preload); (4) angular motion between both the upper and lower end plates and core, with visual evidence of core translation (1 of 10 TDRs at 0 N preload, 5 of 10 TDRs at 400 N preload). The pattern of load-displacement curves was substantially changed under a physiologic preload in 8 of 10 TDRs; instead of a relatively gradual change in angle with changing moment application as seen for an intact segment, the TDR displayed regions of both relatively small and relatively large angular changes with gradual moment application.
Charité TDR restored near normal quantity of flexion-extension range of motion under a constant physiologic preload; however, the quality of segmental motion differed from the intact case over the flexion-extension range. Whereas some TDRs showed visual evidence of core translation, the predominant angular motion within the prosthesis occurred between the upper end plate and the polyethylene core. Likely factors affecting the function of the Charité TDR include implant placement and orientation, intraoperative change in lordosis, and magnitude of physiologic compressive preload. Further work is needed to assess the effects of the prosthesis motion patterns identified in the study on the load sharing at the implanted level and polyethylene core wear.
全椎间盘置换术(TDR)被推荐用于减轻推测为椎间盘源性疼痛,同时保留脊柱运动功能。Charité TDR的浮动核心宣称可在生理负荷下复制健康椎间盘的运动学。虽然已测量了Charité TDR术后的节段运动,但对于生理压缩预负荷对椎体运动及TDR术后假体组件运动的影响知之甚少。
(1)Charité TDR能否在生理负荷下恢复腰椎运动节段的正常负荷-位移行为?(2)当植入腰椎运动节段时,假体组件在生理负荷下如何相对彼此移动?
一项使用人体腰椎(L1-骶骨)的生物力学研究。
使用五具腰椎(年龄:52±9.3岁)。标本在以下序列中,于0 N和400 N的压缩跟随预负荷下,接受屈曲(8 Nm)和伸展(6 Nm)力矩测试:(i)完整状态,(ii)L5-S1节段行Charité TDR,(iii)L5-S1节段模拟愈合融合,L4-L5节段行Charité TDR。节段运动通过光电测量。在整个运动范围内,使用连续数字视频荧光透视法直观评估假体终板与核心之间的运动。此处报告10例Charité TDR的运动学情况:5例于L5-S1节段,5例于L4-L5节段。
Charité TDR增加了腰椎节段的屈伸运动范围(p<0.05)。在400 N预负荷下,L5-S1节段的运动范围从完整状态的6.8±4.4度增加到10.0±2.4度,L4-L5节段从7.0±2.6度增加到10.8±2.9度。Charité TDR使L5-S1节段的节段前凸增加8.1±6.9度(p<0.05),L4-L5节段增加5.4±3.5度(p<0.05)。注意到四种假体组件运动模式:(1)仅上端板与核心之间有角向运动,几乎没有或没有核心平移的视觉证据(0 N预负荷下10例TDR中的9例,400 N预负荷下10例TDR中的5例);(2)上假体终板从核心抬起或核心从下端板抬起(仅在0 N预负荷下10例TDR中的9例伸展时观察到);(3)核心卡滞,导致在部分运动范围内核心锁定(在400 N预负荷下10例TDR中的8例伸展时观察到);(4)上端板和下端板与核心之间均有角向运动,有核心平移的视觉证据(0 N预负荷下10例TDR中的1例,400 N预负荷下10例TDR中的5例)。10例TDR中有8例在生理预负荷下,负荷-位移曲线模式发生了显著变化;与完整节段随着力矩施加角度相对逐渐变化不同,TDR在逐渐施加力矩时显示出角度变化相对较小和相对较大的区域。
Charité TDR在恒定生理预负荷下恢复了接近正常量的屈伸运动范围;然而,在屈伸范围内节段运动的质量与完整情况不同。虽然一些TDR显示出核心平移的视觉证据,但假体内部主要的角向运动发生在上端板与聚乙烯核心之间。影响Charité TDR功能的可能因素包括植入物的放置和方向、术中前凸的改变以及生理压缩预负荷的大小。需要进一步开展工作,以评估本研究中确定的假体运动模式对植入节段负荷分担及聚乙烯核心磨损的影响。