Peña Fernando J, Saravia Fernando, García-Herreros Manuel, Núñez-martínez Ivan, Tapia Jose Antonio, Johannisson Anders, Wallgren Margaretha, Rodríguez-Martínez Heriberto
Section of Animal Reproduction and Obstetrics, Department of Herd Health and Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain.
J Androl. 2005 Nov-Dec;26(6):716-23. doi: 10.2164/jandrol.05030.
A statistical approach using sequentially principal component analysis (PCA), clustering, and discriminant analyses was developed to identify sperm morphometric subpopulations in well-defined portions of the fresh boar ejaculate. Semen was obtained as 2 portions (the first 10 mL of the sperm-rich fraction and the rest of the ejaculate, respectively) and frozen using a conventional protocol. Before freezing, an aliquot was used for computer-assisted sperm morphometry analysis (ASMA). Postthaw quality was evaluated using computer-assisted sperm analysis (CASA), and an annexin-V/PI assay evaluated sperm membranes. The PCA revealed that 3 variables represented more than 78% of the cumulative variance in sperm subpopulations. The clustering and discriminant analyses, based on 5780 individual spermatozoa, revealed the existence of 4 sperm subpopulations. The relative percentage of these subpopulations varied between boar and ejaculate portions. Linear regression models based on measured morphometric characteristics could account for up to 36% of the percentage of intact sperm membranes postthaw. The ASMA protocol used in our study was useful to detect subtle morphometric differences between spermatozoa, and the combination of this analysis with a multivariate statistical procedure gave new information on the biological characteristics of boar ejaculates that is not given by conventional sperm analysis.
开发了一种使用顺序主成分分析(PCA)、聚类分析和判别分析的统计方法,以识别新鲜公猪射精明确部分中的精子形态亚群。精液分为两部分获取(分别为富含精子部分的前10 mL和射精的其余部分),并采用传统方案冷冻。冷冻前,取一份用于计算机辅助精子形态分析(ASMA)。解冻后质量使用计算机辅助精子分析(CASA)进行评估,膜联蛋白-V/PI试验评估精子膜。主成分分析表明,3个变量代表了精子亚群累积方差的78%以上。基于5780个单个精子的聚类分析和判别分析表明存在4个精子亚群。这些亚群的相对百分比在公猪和射精部分之间有所不同。基于测量的形态特征的线性回归模型可以解释解冻后完整精子膜百分比的36%。我们研究中使用的ASMA方案有助于检测精子之间细微的形态差异,并且这种分析与多变量统计程序的结合提供了关于公猪射精生物学特征的新信息,而传统精子分析并未给出这些信息。