Liu Feng, Baggerman Geert, D'Hertog Wannes, Verleyen Peter, Schoofs Liliane, Wets Geert
Laboratory for Developmental Physiology, Genomics, and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
Mol Cell Proteomics. 2006 Mar;5(3):510-22. doi: 10.1074/mcp.M400114-MCP200. Epub 2005 Nov 16.
Bioactive peptides play critical roles in regulating most biological processes in animals. The elucidation of the amino acid sequence of these regulatory peptides is crucial for our understanding of animal physiology. Most of the (neuro)peptides currently known were identified by purification and subsequent amino acid sequencing. With the entire genome sequence of some animals now available, it has become possible to predict novel putative peptides. In this way, BLAST (Basic Local Alignment Searching Tool) analysis of the Drosophila melanogaster genome has allowed annotation of 36 secretory peptide genes so far. Peptide precursor genes are, however, poorly predicted by this algorithm, thus prompting an alternative approach described here. With the described searching program we scanned the Drosophila genome for predicted proteins with the structural hallmarks of neuropeptide precursors. As a result, 76 additional putative secretory peptide genes were predicted in addition to the 43 annotated ones. These putative (neuro)peptide genes contain conserved motifs reminiscent of known neuropeptides from other animal species. Peptides that display sequence similarities to the mammalian vasopressin, atrial natriuretic peptide, and prolactin precursors and the invertebrate peptides orcokinin, prothoracicotropic hormones, trypsin modulating oostatic factor, and Drosophila immune induced peptides (DIMs) among others were discovered. Our data hence provide further evidence that many neuropeptide genes were already present in the ancestor of Protostomia and Deuterostomia prior to their divergence. This bioinformatic study opens perspectives for the genome-wide analysis of peptide genes in other eukaryotic model organisms.
生物活性肽在调节动物的大多数生物过程中发挥着关键作用。阐明这些调节肽的氨基酸序列对于我们理解动物生理学至关重要。目前已知的大多数(神经)肽是通过纯化和随后的氨基酸测序鉴定出来的。随着一些动物的全基因组序列现已可用,预测新的假定肽成为可能。通过这种方式,对黑腹果蝇基因组进行的BLAST(基本局部比对搜索工具)分析到目前为止已注释了36个分泌肽基因。然而,该算法对肽前体基因的预测效果不佳,因此促使本文描述了一种替代方法。利用所描述的搜索程序,我们在果蝇基因组中扫描具有神经肽前体结构特征的预测蛋白质。结果,除了已注释的43个基因外,还预测了另外76个假定的分泌肽基因。这些假定的(神经)肽基因包含与其他动物物种已知神经肽相似的保守基序。发现了与哺乳动物血管加压素、心房利钠肽和催乳素前体以及无脊椎动物肽奥科宁、促前胸腺激素、胰蛋白酶调节卵静止因子和果蝇免疫诱导肽(DIMs)等具有序列相似性的肽。因此,我们的数据进一步证明,许多神经肽基因在原口动物和后口动物的祖先分化之前就已经存在。这项生物信息学研究为其他真核模式生物中肽基因的全基因组分析开辟了前景。