Kaplan J B, Sass P M
Oncology and Immunology Research Department, Medical Research Division, Lederle Laboratories, Pearl River, New York 10965, USA.
Cancer Commun. 1991;3(12):383-8. doi: 10.3727/095535491820873704.
Membrane localization of ras p21 involves a complex series of post-translational processing events, including S-farnesylation of Cys-186, removal of three carboxyl-terminal amino acid residues, and methylation of the carboxyl-terminal farnesylcysteine residue. Palmitoylation of cysteine residues within the hypervariable region (amino acids 165-185) is also required for membrane localization of mammalian H-, N-, and K-ras(A). For K-ras(B), which contains no cysteine residues within the hypervariable region, a polybasic domain substitutes for palmitoylation as a second signal for plasma membrane targeting. In order to investigate the localization of K-ras(B) to the plasma membrane, we purified wild-type and mutant human K-ras(B) proteins from strains of E. coli harboring bacterial expression plasmids and injected them into Xenopus laevis oocytes. Our results show that wild-type and activated K-ras(B) proteins can be post-translationally modified and can induce meiotic maturation in Xenopus oocytes. A mutation at Cys-186 (Cys to Gly) abolished the ability of activated K-ras(B) to induce meiosis. Deprivation of isoprenyl precursors by the addition of lovastatin, a drug that blocks the synthesis of mevalonate, also abolished the ability of activated K-ras(B) to induce meiosis, although this inhibition could be overcome by the addition of exogenous mevalonate. Lovastatin did not block meiotic maturation induced by microinjection of purified mos protein, a component of the cytostatic factor that arrests Xenopus oocytes at the first meiotic prophase. These results indicate that post-translational isoprenylation of K-ras(B) is essential for plasma membrane targeting and induction of meiotic maturation in Xenopus oocytes and that further isoprenyl modification of proteins downstream from mos signal transduction is not essential for this process.
Ras p21的膜定位涉及一系列复杂的翻译后加工事件,包括半胱氨酸-186的S-法尼基化、去除三个羧基末端氨基酸残基以及羧基末端法尼基半胱氨酸残基的甲基化。哺乳动物H-、N-和K-ras(A)的膜定位还需要高变区内(氨基酸165 - 185)的半胱氨酸残基进行棕榈酰化。对于在高变区内不含半胱氨酸残基的K-ras(B),一个多碱性结构域替代棕榈酰化作为质膜靶向的第二个信号。为了研究K-ras(B)在质膜上的定位,我们从携带细菌表达质粒的大肠杆菌菌株中纯化了野生型和突变型人K-ras(B)蛋白,并将它们注射到非洲爪蟾卵母细胞中。我们的结果表明,野生型和活化的K-ras(B)蛋白可以进行翻译后修饰,并能诱导非洲爪蟾卵母细胞减数分裂成熟。半胱氨酸-186处的突变(半胱氨酸突变为甘氨酸)消除了活化的K-ras(B)诱导减数分裂的能力。添加洛伐他汀(一种阻断甲羟戊酸合成的药物)剥夺异戊二烯前体,也消除了活化的K-ras(B)诱导减数分裂的能力,尽管这种抑制作用可以通过添加外源性甲羟戊酸来克服。洛伐他汀并不阻断由微注射纯化的mos蛋白诱导的减数分裂成熟,mos蛋白是细胞静止因子的一个组分,可使非洲爪蟾卵母细胞停滞在第一次减数分裂前期。这些结果表明,K-ras(B)的翻译后异戊二烯化对于非洲爪蟾卵母细胞的质膜靶向和减数分裂成熟的诱导至关重要,并且mos信号转导下游蛋白质的进一步异戊二烯修饰对于该过程并非必不可少。