Suppr超能文献

Physiological modelling of agitation-sedation dynamics including endogenous agitation reduction.

作者信息

Rudge A D, Chase J G, Shaw G M, Lee D

机构信息

Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, and Department of Intensive Care Medicine, Christchurch Hospital, New Zealand.

出版信息

Med Eng Phys. 2006 Sep;28(7):629-38. doi: 10.1016/j.medengphy.2005.10.008. Epub 2005 Nov 18.

Abstract

Sedation administration and agitation management are fundamental activities in any intensive care unit. A lack of objective measures of agitation and sedation, as well as poor understanding of the underlying dynamics, contribute to inefficient outcomes and expensive healthcare. Recent models of agitation-sedation pharmacodynamics have enhanced understanding of the underlying dynamics and enable development of advanced protocols for semi-automated sedation administration. However, these initial models do not capture all observed dynamics, particularly periods of low sedative infusion. A physiologically representative model that incorporates endogenous agitation reduction (EAR) dynamics is presented and validated using data from 37 critical care patients. High median relative average normalised density (RAND) values of 0.77 and 0.78 support and minimum RAND values of 0.51 and 0.55 for models without and with EAR dynamics respectively show that both models are valid representations of the fundamental agitation-sedation dynamics present in a broad spectrum of intensive care unit (ICU) patients. While the addition of the EAR dynamic increases the ability of the model to capture the observed dynamics of the agitation-sedation system, the improvement is relatively small and the sensitivity of the model to the EAR dynamic is low. Although this may represent a limitation of the model, the inclusion of EAR is shown to be important for accurately capturing periods of low, or no, sedative infusion, such as during weaning prior to extubation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验