Suppr超能文献

核酸螺旋稳定性:盐浓度、阳离子价态与大小以及链长的影响

Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length.

作者信息

Tan Zhi-Jie, Chen Shi-Jie

机构信息

Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Biophys J. 2006 Feb 15;90(4):1175-90. doi: 10.1529/biophysj.105.070904. Epub 2005 Nov 18.

Abstract

Metal ions play crucial roles in thermal stability and folding kinetics of nucleic acids. For ions (especially multivalent ions) in the close vicinity of nucleic acid surface, interion correlations and ion-binding mode fluctuations may be important. Poisson-Boltzmann theory ignores these effects whereas the recently developed tightly bound ion (TBI) theory explicitly accounts for these effects. Extensive experimental data demonstrate that the TBI theory gives improved predictions for multivalent ions (e.g., Mg2+) than the Poisson-Boltzmann theory. In this study, we use the TBI theory to investigate how the metal ions affect the folding stability of B-DNA helices. We quantitatively evaluate the effects of ion concentration, ion size and valence, and helix length on the helix stability. Moreover, we derive practically useful analytical formulas for the thermodynamic parameters as functions of finite helix length, ion type, and ion concentration. We find that the helix stability is additive for high ion concentration and long helix and nonadditive for low ion concentration and short helix. All these results are tested against and supported by extensive experimental data.

摘要

金属离子在核酸的热稳定性和折叠动力学中起着至关重要的作用。对于核酸表面附近的离子(尤其是多价离子),离子间的相关性和离子结合模式的波动可能很重要。泊松 - 玻尔兹曼理论忽略了这些影响,而最近发展的紧密结合离子(TBI)理论则明确考虑了这些影响。大量实验数据表明,与泊松 - 玻尔兹曼理论相比,TBI理论对多价离子(如Mg2 +)能给出更好的预测。在本研究中,我们使用TBI理论来研究金属离子如何影响B - DNA螺旋的折叠稳定性。我们定量评估了离子浓度、离子大小和价态以及螺旋长度对螺旋稳定性的影响。此外,我们推导了作为有限螺旋长度、离子类型和离子浓度函数的热力学参数的实用解析公式。我们发现,对于高离子浓度和长螺旋,螺旋稳定性是可加的;而对于低离子浓度和短螺旋,螺旋稳定性是非加性的。所有这些结果都通过大量实验数据进行了检验并得到了支持。

相似文献

1
Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length.
Biophys J. 2006 Feb 15;90(4):1175-90. doi: 10.1529/biophysj.105.070904. Epub 2005 Nov 18.
2
Ion-mediated nucleic acid helix-helix interactions.
Biophys J. 2006 Jul 15;91(2):518-36. doi: 10.1529/biophysj.106.084285. Epub 2006 Apr 28.
3
RNA helix stability in mixed Na+/Mg2+ solution.
Biophys J. 2007 May 15;92(10):3615-32. doi: 10.1529/biophysj.106.100388. Epub 2007 Feb 26.
4
Quantitative analysis of the ion-dependent folding stability of DNA triplexes.
Phys Biol. 2011 Dec;8(6):066006. doi: 10.1088/1478-3975/8/6/066006. Epub 2011 Nov 9.
5
Salt contribution to RNA tertiary structure folding stability.
Biophys J. 2011 Jul 6;101(1):176-87. doi: 10.1016/j.bpj.2011.05.050.
6
Electrostatic free energy landscapes for nucleic acid helix assembly.
Nucleic Acids Res. 2006;34(22):6629-39. doi: 10.1093/nar/gkl810. Epub 2006 Dec 1.
7
Loop dependence of the stability and dynamics of nucleic acid hairpins.
Nucleic Acids Res. 2008 Mar;36(4):1098-112. doi: 10.1093/nar/gkm1083. Epub 2007 Dec 20.
9
Salt-dependent folding energy landscape of RNA three-way junction.
Biophys J. 2010 Jan 6;98(1):111-20. doi: 10.1016/j.bpj.2009.09.057.

引用本文的文献

1
3D structure and stability prediction of DNA with multi-way junctions in ionic solutions.
PLoS Comput Biol. 2025 Aug 18;21(8):e1013346. doi: 10.1371/journal.pcbi.1013346. eCollection 2025 Aug.
2
Computational modeling of cotranscriptional RNA folding.
Comput Struct Biotechnol J. 2025 Jun 11;27:2638-2648. doi: 10.1016/j.csbj.2025.06.005. eCollection 2025.
3
SERS-based detection of DNA methylation for cancer diagnosis: Cation-mediated adsorption to silver nanoparticles.
PLoS One. 2025 Jun 13;20(6):e0325539. doi: 10.1371/journal.pone.0325539. eCollection 2025.
4
Denaturation methods for reusable magnetic biosensors.
Lab Chip. 2025 May 29. doi: 10.1039/d5lc00040h.
5
Structural Insights into an Antiparallel Chair-Type G-Quadruplex From the Intron of NOP56 Oncogene.
Adv Sci (Weinh). 2025 Apr;12(16):e2406230. doi: 10.1002/advs.202406230. Epub 2025 Mar 6.
6
DNA Sensing with Whispering Gallery Mode Microlasers.
Nano Lett. 2025 Mar 19;25(11):4467-4475. doi: 10.1021/acs.nanolett.5c00078. Epub 2025 Mar 4.
8
Understanding the relationship between sequences and kinetics of DNA strand displacements.
Nucleic Acids Res. 2024 Sep 9;52(16):9407-9416. doi: 10.1093/nar/gkae652.
9
Surface-Enhanced Raman Spectroscopy (SERS)-Based Sensors for Deoxyribonucleic Acid (DNA) Detection.
Molecules. 2024 Jul 16;29(14):3338. doi: 10.3390/molecules29143338.

本文引用的文献

1
Ions and RNA folding.
Annu Rev Biophys Biomol Struct. 2005;34:221-43. doi: 10.1146/annurev.biophys.34.040204.144511.
2
Metal ions and RNA folding: a highly charged topic with a dynamic future.
Curr Opin Chem Biol. 2005 Apr;9(2):104-9. doi: 10.1016/j.cbpa.2005.02.004.
4
Folding of the Tetrahymena ribozyme by polyamines: importance of counterion valence and size.
J Mol Biol. 2004 Jul 30;341(1):27-36. doi: 10.1016/j.jmb.2004.06.008.
5
Prediction of hybridization and melting for double-stranded nucleic acids.
Biophys J. 2004 Jul;87(1):215-26. doi: 10.1529/biophysj.103.020743.
7
Salt-dependent heat capacity changes for RNA duplex formation.
J Am Chem Soc. 2004 Jun 2;126(21):6530-1. doi: 10.1021/ja0316263.
8
The thermodynamics of DNA structural motifs.
Annu Rev Biophys Biomol Struct. 2004;33:415-40. doi: 10.1146/annurev.biophys.32.110601.141800.
10
Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures.
Biochemistry. 2004 Mar 30;43(12):3537-54. doi: 10.1021/bi034621r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验