Suppr超能文献

用于全基因组翻译网络建模与分析的算法框架。

An algorithmic framework for genome-wide modeling and analysis of translation networks.

作者信息

Mehra Amit, Hatzimanikatis Vassily

机构信息

Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois, USA.

出版信息

Biophys J. 2006 Feb 15;90(4):1136-46. doi: 10.1529/biophysj.105.062521. Epub 2005 Nov 18.

Abstract

The sequencing of genomes of several organisms and advances in high throughput technologies for transcriptome and proteome analysis has allowed detailed mechanistic studies of transcription and translation using mathematical frameworks that allow integration of both sequence-specific and kinetic properties of these fundamental cellular processes. To understand how perturbations in mRNA levels affect the synthesis of individual proteins within a large protein synthesis network, we consider here a genome-scale codon-wide model of the translation machinery with explicit description of the processes of initiation, elongation, and termination. The mechanistic codon-wide description of the translation process and the large number of mRNAs competing for resources, such as ribosomes, requires the use of novel efficient algorithmic approaches. We have developed such an efficient algorithmic framework for genome-scale models of protein synthesis. The mathematical and computational framework was applied to the analysis of the sensitivity of a translation network to perturbation in the rate constants and in the mRNA levels in the system. Our studies suggest that the highest specific protein synthesis rate (protein synthesis rate per mRNA molecule) is achieved when translation is elongation-limited. We find that the mRNA species with the highest number of actively translating ribosomes exerts maximum control on the synthesis of every protein, and the response of protein synthesis rates to mRNA expression variation is a function of the strength of initiation of translation at different mRNA species. Such quantitative understanding of the sensitivity of protein synthesis to the variation of mRNA expression can provide insights into cellular robustness mechanisms and guide the design of protein production systems.

摘要

几种生物基因组的测序以及转录组和蛋白质组分析的高通量技术的进步,使得利用数学框架对转录和翻译进行详细的机制研究成为可能,这些数学框架能够整合这些基本细胞过程的序列特异性和动力学特性。为了理解mRNA水平的扰动如何影响大型蛋白质合成网络中单个蛋白质的合成,我们在此考虑一个翻译机制的全基因组规模密码子水平模型,该模型明确描述了起始、延伸和终止过程。对翻译过程进行密码子水平的机制描述以及大量mRNA竞争核糖体等资源,需要使用新颖高效的算法方法。我们已经为蛋白质合成全基因组规模模型开发了这样一个高效的算法框架。该数学和计算框架被应用于分析翻译网络对系统中速率常数和mRNA水平扰动的敏感性。我们的研究表明,当翻译受延伸限制时,可实现最高的特定蛋白质合成速率(每个mRNA分子的蛋白质合成速率)。我们发现,具有最多活跃翻译核糖体的mRNA种类对每种蛋白质的合成施加最大控制,并且蛋白质合成速率对mRNA表达变化的响应是不同mRNA种类翻译起始强度的函数。对蛋白质合成对mRNA表达变化敏感性的这种定量理解可以为细胞稳健性机制提供见解,并指导蛋白质生产系统的设计。

相似文献

引用本文的文献

1
Ribosomal computing: implementation of the computational method.核糖体计算:计算方法的实现。
BMC Bioinformatics. 2024 Oct 3;25(1):321. doi: 10.1186/s12859-024-05945-w.
5
Predicting translation initiation rates for designing synthetic biology.预测翻译起始率以设计合成生物学。
Front Bioeng Biotechnol. 2014 Jan 20;2:1. doi: 10.3389/fbioe.2014.00001. eCollection 2014.
8
A genome-scale integration and analysis of Lactococcus lactis translation data.乳球菌翻译数据的全基因组整合与分析。
PLoS Comput Biol. 2013;9(10):e1003240. doi: 10.1371/journal.pcbi.1003240. Epub 2013 Oct 10.

本文引用的文献

4
Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae.酿酒酵母mRNA翻译谱的全基因组分析。
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3889-94. doi: 10.1073/pnas.0635171100. Epub 2003 Mar 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验