Lathem Wyndham W, Crosby Seth D, Miller Virginia L, Goldman William E
Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17786-91. doi: 10.1073/pnas.0506840102. Epub 2005 Nov 23.
Although pneumonic plague is the deadliest manifestation of disease caused by the bacterium Yersinia pestis, there is surprisingly little information on the cellular and molecular mechanisms responsible for Y. pestis-triggered pathology in the lung. Therefore, to understand the progression of this unique disease, we characterized an intranasal mouse model of primary pneumonic plague. Mice succumbed to a purulent multifocal severe exudative bronchopneumonia that closely resembles the disease observed in humans. Analyses revealed a strikingly biphasic syndrome, in which the infection begins with an antiinflammatory state in the first 24-36 h that rapidly progresses to a highly proinflammatory state by 48 h and death by 3 days. To assess the adaptation of Y. pestis to a mammalian environment, we used DNA microarray technology to analyze the transcriptional responses of the bacteria during interaction with the mouse lung. Included among the genes up-regulated in vivo are those comprising the yop-ysc type III secretion system and genes contained within the chromosomal pigmentation locus, validating the use of this technology to identify loci essential to the virulence of Y. pestis.
虽然肺鼠疫是由鼠疫耶尔森菌引起的疾病最致命的表现形式,但令人惊讶的是,关于鼠疫耶尔森菌引发肺部病理的细胞和分子机制的信息却很少。因此,为了了解这种独特疾病的进展过程,我们对原发性肺鼠疫的鼻内小鼠模型进行了表征。小鼠死于化脓性多灶性严重渗出性支气管肺炎,这与在人类身上观察到的疾病非常相似。分析揭示了一种显著的双相综合征,其中感染在最初的24 - 36小时以抗炎状态开始,到48小时迅速发展为高度促炎状态,并在3天内导致死亡。为了评估鼠疫耶尔森菌对哺乳动物环境的适应性,我们使用DNA微阵列技术分析了细菌在与小鼠肺相互作用期间的转录反应。体内上调的基因包括那些组成yop - ysc III型分泌系统的基因以及染色体色素沉着位点内包含的基因,这验证了使用该技术来鉴定对鼠疫耶尔森菌毒力至关重要的基因座。