Suppr超能文献

赞技艺

In praise of artifice.

作者信息

Rust Nicole C, Movshon J Anthony

机构信息

Howard Hughes Medical Institute and the Center for Neural Science, New York, New York 10003, USA.

出版信息

Nat Neurosci. 2005 Dec;8(12):1647-50. doi: 10.1038/nn1606.

Abstract

The visual system evolved to process natural images, and the goal of visual neuroscience is to understand the computations it uses to do this. Indeed the goal of any theory of visual function is a model that will predict responses to any stimulus, including natural scenes. It has, however, recently become common to take this fundamental principle one step further: trying to use photographic or cinematographic representations of natural scenes (natural stimuli) as primary probes to explore visual computations. This approach is both challenging and controversial, and we argue that this use of natural images is so fraught with difficulty that it is not useful. Traditional methods for exploring visual computations that use artificial stimuli with carefully selected properties have been and continue to be the most effective tools for visual neuroscience. The proper use of natural stimuli is to test models based on responses to these synthetic stimuli, not to replace them.

摘要

视觉系统是为处理自然图像而进化的,视觉神经科学的目标是了解其用于此目的的计算方式。事实上,任何视觉功能理论的目标都是建立一个能够预测对任何刺激(包括自然场景)反应的模型。然而,最近进一步贯彻这一基本原则已变得很常见:试图将自然场景的摄影或电影表现形式(自然刺激)作为探索视觉计算的主要探针。这种方法既具有挑战性又存在争议,我们认为这种对自然图像的使用困难重重,并无用处。使用具有精心挑选特性的人工刺激来探索视觉计算的传统方法一直是且仍将是视觉神经科学最有效的工具。自然刺激的正确用途是基于对这些合成刺激的反应来测试模型,而不是取代它们。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验