Suppr超能文献

颜色自然刺激的伽马反应可以从局部低水平刺激特征预测。

Gamma Responses to Colored Natural Stimuli Can Be Predicted from Local Low-Level Stimulus Features.

机构信息

IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India.

Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India.

出版信息

eNeuro. 2024 Jul 25;11(7). doi: 10.1523/ENEURO.0417-23.2024. Print 2024 Jul.

Abstract

The role of gamma rhythm (30-80 Hz) in visual processing is debated; stimuli like gratings and hue patches generate strong gamma, but many natural images do not. Could image gamma responses be predicted by approximating images as gratings or hue patches? Surprisingly, this question remains unanswered, since the joint dependence of gamma on multiple features is poorly understood. We recorded local field potentials and electrocorticogram from two female monkeys while presenting natural images and parametric stimuli varying along several feature dimensions. Gamma responses to different grating/hue features were separable, allowing for a multiplicative model based on individual features. By fitting a hue patch to the image around the receptive field, this simple model could predict gamma responses to chromatic images across scales with reasonably high accuracy. Our results provide a simple "baseline" model to predict gamma from local image properties, against which more complex models of natural vision can be tested.

摘要

伽马节律(30-80Hz)在视觉处理中的作用存在争议;条纹和色调补丁等刺激会产生强烈的伽马,但许多自然图像则不会。能否通过将图像近似为条纹或色调补丁来预测图像的伽马响应?令人惊讶的是,这个问题仍然没有答案,因为伽马对多个特征的联合依赖性还没有被很好地理解。我们在两只雌性猕猴呈现自然图像和沿多个特征维度变化的参数刺激时记录了局部场电位和脑电图。对不同的条纹/色调特征的伽马响应是可分离的,这允许基于单个特征的乘法模型。通过在感受野周围拟合色调补丁,可以用这种简单的模型以相当高的精度预测跨尺度的色觉图像的伽马响应。我们的结果提供了一个简单的“基线”模型,可以根据局部图像属性预测伽马,从而可以对更复杂的自然视觉模型进行测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04d4/11277289/ac2c862fdd8d/eneuro-11-ENEURO.0417-23.2024-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验