Meyer Yves, Reichheld Jean Philippe, Vignols Florence
Laboratoire de Physiologie et Biologie Moléculaire des Plantes, Université UMR CNRS 5096 Genome et Développement des Plantes, 52, Av Paul Alduy , 66860 Perpignan, France.
Photosynth Res. 2005 Dec;86(3):419-33. doi: 10.1007/s11120-005-5220-y. Epub 2005 Nov 15.
Regulation of disulfide dithiol exchange has become increasingly important in our knowledge of plant life. Initially discovered as regulators of light-dependent malate biosynthesis in the chloroplast, plant thioredoxins are now implicated in a large panel of reactions related to metabolism, defense and development. In this review we describe the numerous thioredoxin types encoded by the Arabidopsis genome, and provide evidence that they are present in all higher plants. Some results suggest cross-talk between thioredoxins and glutaredoxins, the second family of disulfide dithiol reductase. The development of proteomics in plants revealed an unexpectedly large number of putative target proteins for thioredoxins and glutaredoxins. Nevertheless, we are far from a clear understanding of the actual function of each thioredoxin in planta. Although hampered by functional redundancies between genes, genetic approaches are probably unavoidable to define which thioredoxin interacts with which target protein and evaluate the physiological consequences.
二硫键-二硫醇交换的调节在我们对植物生命的认识中变得越来越重要。植物硫氧还蛋白最初被发现是叶绿体中光依赖型苹果酸生物合成的调节因子,现在它参与了大量与代谢、防御和发育相关的反应。在这篇综述中,我们描述了拟南芥基因组编码的多种硫氧还蛋白类型,并提供证据表明它们存在于所有高等植物中。一些结果表明硫氧还蛋白和谷氧还蛋白(二硫键-二硫醇还原酶的第二个家族)之间存在相互作用。植物蛋白质组学的发展揭示了硫氧还蛋白和谷氧还蛋白意想不到的大量假定靶蛋白。然而,我们对植物中每种硫氧还蛋白的实际功能还远未清楚了解。尽管受到基因功能冗余的阻碍,但遗传方法可能是确定哪种硫氧还蛋白与哪种靶蛋白相互作用并评估生理后果所不可避免的。