Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Germany.
Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Spain.
FEBS Lett. 2018 Sep;592(18):3111-3115. doi: 10.1002/1873-3468.13216. Epub 2018 Aug 30.
In order to maintain enzyme stability and activity, chloroplasts use two systems of thiol-disulfide reductases for the control of redox-dependent properties of proteins. Previous studies have revealed that plastid-localized thioredoxins (TRX) and the NADPH-dependent thioredoxin reductase C (NTRC) are important for the reduction of cysteine residues of enzymes involved in chlorophyll synthesis. Very recently, it was shown that the pale green phenotype of the ntrc mutant is suppressed when the contents of 2-cysteine peroxiredoxins (2CP) A and B are decreased. Here, we show that suppression of the ntrc phenotype results from a recovery of wild-type-like redox control of chlorophyll biosynthesis enzymes in ntrc/2cp mutants. The presented results support the conclusion that TRXs rather than NTRC are the predominant reductases mediating the redox-regulation of these enzymes.
为了维持酶的稳定性和活性,叶绿体使用两种巯基-二硫键还原酶系统来控制蛋白质的氧化还原依赖特性。先前的研究表明,定位于质体的硫氧还蛋白(TRX)和 NADPH 依赖的硫氧还蛋白还原酶 C(NTRC)对于还原参与叶绿素合成的酶的半胱氨酸残基很重要。最近,研究表明,当 2-半胱氨酸过氧化物酶(2CP)A 和 B 的含量降低时,ntrc 突变体的淡绿色表型得到抑制。在这里,我们表明,ntrc 表型的抑制是由于 ntrc/2cp 突变体中叶绿素生物合成酶的氧化还原控制恢复为野生型样。所提出的结果支持这样的结论,即 TRX 而不是 NTRC 是介导这些酶的氧化还原调节的主要还原剂。