电压依赖性阴离子通道(VDAC)作为线粒体管理者——跳出框框思考
Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box.
作者信息
Lemasters John J, Holmuhamedov Ekhson
机构信息
Department of Cell and Developmental Biology, University of North Carolina, CB #7090, 236 Taylor Hall, Chapel Hill, NC 27599, USA.
出版信息
Biochim Biophys Acta. 2006 Feb;1762(2):181-90. doi: 10.1016/j.bbadis.2005.10.006. Epub 2005 Nov 4.
Despite a detailed understanding of their metabolism, mitochondria often behave anomalously. In particular, global suppression of mitochondrial metabolism and metabolite exchange occurs in apoptosis, ischemia and anoxia, cytopathic hypoxia of sepsis and multiple organ failure, alcoholic liver disease, aerobic glycolysis in cancer cells (Warburg effect) and unstimulated pancreatic beta cells. Here, we propose that closure of voltage-dependent anion channels (VDAC) in the mitochondrial outer membrane accounts for global mitochondrial suppression. In anoxia, cytopathic hypoxia and ethanol treatment, reactive oxygen and nitrogen species, cytokines, kinase cascades and increased NADH act to inhibit VDAC conductance and promote selective oxidation of membrane-permeable respiratory substrates like short chain fatty acids and acetaldehyde. In cancer cells, highly expressed hexokinase binds to and inhibits VDAC to suppress mitochondrial function while stimulating glycolysis, but an escape mechanism intervenes when glucose-6-phosphate accumulates and dissociates hexokinase from VDAC. Similarly, glucokinase binds mitochondria of insulin-secreting beta cells, possibly blocking VDAC and suppressing mitochondrial function. We propose that glucose metabolism leads to glucose-6-phosphate-dependent unbinding of glucokinase, relief of VDAC inhibition, release of ATP from mitochondria and ATP-dependent insulin release. In support of the overall proposal, ethanol treatment of isolated rat hepatocytes inhibited mitochondrial respiration and accessibility to adenylate kinase in the intermembrane space, effects that were overcome by digitonin permeabilization of the outer membrane. Overall, these considerations suggest that VDAC is a dynamic regulator, or governator, of global mitochondrial function both in health and disease.
尽管对线粒体的代谢有详细了解,但线粒体的行为常常异常。特别是,在细胞凋亡、缺血和缺氧、脓毒症和多器官功能衰竭的细胞病变性缺氧、酒精性肝病、癌细胞的有氧糖酵解(瓦伯格效应)以及未受刺激的胰腺β细胞中,线粒体代谢和代谢物交换会受到整体抑制。在此,我们提出线粒体外膜中电压依赖性阴离子通道(VDAC)的关闭是线粒体整体抑制的原因。在缺氧、细胞病变性缺氧和乙醇处理过程中,活性氧和氮物种、细胞因子、激酶级联反应以及增加的NADH会抑制VDAC的电导,并促进对膜可渗透呼吸底物(如短链脂肪酸和乙醛)的选择性氧化。在癌细胞中,高表达的己糖激酶与VDAC结合并抑制其活性,从而抑制线粒体功能,同时刺激糖酵解,但当6-磷酸葡萄糖积累并使己糖激酶与VDAC解离时,会出现一种逃逸机制。同样,葡萄糖激酶与分泌胰岛素的β细胞的线粒体结合,可能会阻断VDAC并抑制线粒体功能。我们提出葡萄糖代谢导致葡萄糖激酶依赖于6-磷酸葡萄糖的解离、VDAC抑制的解除、线粒体中ATP的释放以及ATP依赖的胰岛素释放。为支持这一总体观点,用乙醇处理分离的大鼠肝细胞会抑制线粒体呼吸以及内膜间隙中腺苷酸激酶的可及性,而用洋地黄皂苷使外膜通透化可克服这些影响。总体而言,这些考虑表明VDAC是健康和疾病状态下线粒体整体功能的动态调节因子或调控者。