Milne Jacqueline L S, Wu Xiongwu, Borgnia Mario J, Lengyel Jeffrey S, Brooks Bernard R, Shi Dan, Perham Richard N, Subramaniam Sriram
Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA.
J Biol Chem. 2006 Feb 17;281(7):4364-70. doi: 10.1074/jbc.M504363200. Epub 2005 Nov 23.
The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (alpha(2)beta(2)) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587-5598). An annular gap of approximately 90 A separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of approximately 75 A between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain.
丙酮酸脱氢酶多酶复合体是细胞中最大的多功能催化机器之一,催化丙酮酸生成乙酰辅酶A。我们之前报道过一个11-MDa亚复合体的分子结构,该亚复合体由来自嗜热脂肪芽孢杆菌的60聚体二十面体二氢硫辛酰乙酰转移酶(E2)组成,其表面装饰有60个异源四聚体(α₂β₂)153-kDa丙酮酸脱羧酶(E1)拷贝(米尔恩,J.L.S.,施,D.,罗森塔尔,P.B.,桑夏恩,J.S.,多明戈,G.J.,吴,X.,布鲁克斯,B.R.,佩勒姆,R.N.,亨德森,R.,和苏布拉马尼亚姆,S.(2002年)《欧洲分子生物学组织杂志》21,5587 - 5598)。一个约90 Å的环形间隙将E2的乙酰转移酶催化结构域与由E1四聚体形成的外壳分隔开。利用冷冻电子显微镜,我们在此展示了一个用60个同二聚体100-kDa二氢硫辛酰脱氢酶(E3)拷贝装饰的E2核心的三维重建结构。E2E3复合体在乙酰转移酶结构域的内部二十面体组装体与E3同二聚体的外壳之间有一个类似的约75 Å的环形间隙。将E3坐标自动拟合到图谱中表明,外壳图谱的密度与E3的两个最佳拟合方向的位置之间具有良好的对应关系。如同E1E2复合体中E1的情况一样,E3同二聚体中心的2重轴大致沿外壳周边定向,使得酶的活性位点可从E2核心与外壳之间的环形间隙进入。E1E2和E2E3复合体在结构上的相似性表明,在两个关键阶段中,活性位点耦合机制存在根本相似性,这两个阶段需要摆动的硫辛酰结构域穿过环形间隙移动,即乙酰辅酶A的合成以及硫辛酰结构域二硫杂环戊烷环的再生。