White Ian R, Pocock Stuart J, Wang Duolao
MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 2SR, U.K.
Stat Med. 2005 Dec 30;24(24):3805-21. doi: 10.1002/sim.2420.
When randomized trial results are available for several different groups of patients, neither applying the overall results to each type of patient nor using group-specific results is entirely satisfactory. Instead, we estimate group-specific treatment effects using a Bayesian approach with informative priors for the treatment x group interactions. We describe how we elicited these prior beliefs about the effects of a new drug for the treatment of heart failure in three different patient groups. Using results from three trials, one in each patient group, the posterior mean treatment effects are very similar to the trial-specific maximum likelihood estimates, showing that in this case each trial effectively stands by itself. Our methods can also be applied to subgroup analyses in a single clinical trial, where subgroup-specific posterior means are likely to lie between the subgroup-specific maximum likelihood estimates and the pooled maximum likelihood estimates.
当有针对几组不同患者的随机试验结果时,将总体结果应用于每种类型的患者,或者使用特定组的结果,都不完全令人满意。相反,我们采用贝叶斯方法,对治疗×组的相互作用使用信息先验,来估计特定组的治疗效果。我们描述了如何引出关于一种治疗心力衰竭的新药在三个不同患者组中的效果的这些先验信念。利用三个试验的结果,每个患者组一个试验,后验均值治疗效果与特定试验的最大似然估计非常相似,表明在这种情况下每个试验实际上是独立的。我们的方法也可以应用于单个临床试验的亚组分析,其中特定亚组的后验均值可能介于特定亚组的最大似然估计和合并的最大似然估计之间。