Minelli Cosetta, Thompson John R, Abrams Keith R, Lambert Paul C
Centre for Biostatistics and Genetic Epidemiology, Department of Health Sciences, University of Leicester, Leicester, UK.
Stat Med. 2005 Dec 30;24(24):3845-61. doi: 10.1002/sim.2393.
A genetic model-free method for the meta-analysis of genetic association studies is described that estimates the mode of inheritance from the data rather than assuming that it is known. For a bi-allelic polymorphism, with G as risk allele and g as wild-type, the genetic model depends on the ratio of the two log odds ratios, lambda = log OR(Gg)/log OR(GG), where OR(GG) compares GG with gg and OR(Gg) compares Gg with gg. Modelling log OR(GG) as a random effect creates a hierarchical model that can be implemented within a Bayesian framework. In Bayesian modelling, vague prior distributions have to be specified for all unknown parameters when no external information is available. When the data are sparse even supposedly vague prior distributions may have an influence on the posterior estimates. We investigate the impact of different vague prior distributions for the between-study standard deviation of log OR(GG) and for lambda, by considering three published meta-analyses and associated simulations. Our results show that depending on the characteristics of the meta-analysis the results may indeed be sensitive to the choice of vague prior distribution for either parameter. Genetic association studies usually use a case-control design that should be analysed by the corresponding retrospective likelihood. However, under some circumstances the prospective likelihood has been shown to produce identical results and it is usually preferred for its simplicity. In our meta-analyses the two likelihoods give very similar results.
本文描述了一种用于基因关联研究荟萃分析的无遗传模型方法,该方法从数据中估计遗传模式,而非假定其已知。对于双等位基因多态性,以G作为风险等位基因,g作为野生型,遗传模型取决于两个对数优势比的比值,即lambda = log OR(Gg)/log OR(GG),其中OR(GG)将GG与gg进行比较,OR(Gg)将Gg与gg进行比较。将log OR(GG)建模为随机效应会创建一个可在贝叶斯框架内实现的层次模型。在贝叶斯建模中,当没有外部信息可用时,必须为所有未知参数指定模糊的先验分布。当数据稀疏时,即使是假定模糊的先验分布也可能对后验估计产生影响。我们通过考虑三项已发表的荟萃分析及相关模拟,研究了log OR(GG)的研究间标准差和lambda的不同模糊先验分布的影响。我们的结果表明,根据荟萃分析的特征,结果可能确实对任一参数的模糊先验分布选择敏感。基因关联研究通常采用病例对照设计,应通过相应的回顾性似然性进行分析。然而,在某些情况下,前瞻性似然性已被证明会产生相同的结果,并且由于其简单性通常更受青睐。在我们的荟萃分析中,这两种似然性给出了非常相似的结果。