Holas A, March N H, Rubio Angel
Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka, 01-224 Warsaw, Poland.
J Chem Phys. 2005 Nov 15;123(19):194104. doi: 10.1063/1.2114848.
Holas and March [Phys. Rev. A. 51, 2040 (1995)] gave a formally exact theory for the exchange-correlation (xc) force F(xc)(r)= -inverted Deltaupsilon(xc)(r) associated with the xc potential upsilon(xc)(r) of the density-functional theory in terms of low-order density matrices. This is shown in the present study to lead, rather directly, to the determination of a sum rule nF(xc)=0 relating the xc force with the ground-state density n(r). Some connection is also made with an earlier result relating to the external potential by Levy and Perdew [Phys. Rev. A. 32, 2010 (1985)] and with the quite recent study of Joubert [J. Chem. Phys. 119, 1916 (2003)] relating to the separation of the exchange and correlation contributions.
霍拉斯和马奇[《物理评论A》51, 2040 (1995)]给出了一个形式上精确的理论,用于描述与密度泛函理论的交换关联(xc)势υ(xc)(r)相关的交换关联(xc)力F(xc)(r)= -▽υ(xc)(r),该理论基于低阶密度矩阵。本研究表明,这相当直接地导致了一个求和规则nF(xc)=0的确定,该规则将xc力与基态密度n(r)联系起来。还与利维和平德鲁[《物理评论A》32, 2010 (1985)]关于外势的早期结果以及朱伯特[《化学物理杂志》119, 1916 (2003)]关于交换和关联贡献分离的最新研究建立了一些联系。