下丘脑的葡萄糖感应神经元。

Glucose-sensing neurons of the hypothalamus.

作者信息

Burdakov Denis, Luckman Simon M, Verkhratsky Alexei

机构信息

The University of Manchester Faculty of Life Sciences 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2227-35. doi: 10.1098/rstb.2005.1763.

Abstract

Specialized subgroups of hypothalamic neurons exhibit specific excitatory or inhibitory electrical responses to changes in extracellular levels of glucose. Glucose-excited neurons were traditionally assumed to employ a 'beta-cell' glucose-sensing strategy, where glucose elevates cytosolic ATP, which closes KATP channels containing Kir6.2 subunits, causing depolarization and increased excitability. Recent findings indicate that although elements of this canonical model are functional in some hypothalamic cells, this pathway is not universally essential for excitation of glucose-sensing neurons by glucose. Thus glucose-induced excitation of arcuate nucleus neurons was recently reported in mice lacking Kir6.2, and no significant increases in cytosolic ATP levels could be detected in hypothalamic neurons after changes in extracellular glucose. Possible alternative glucose-sensing strategies include electrogenic glucose entry, glucose-induced release of glial lactate, and extracellular glucose receptors. Glucose-induced electrical inhibition is much less understood than excitation, and has been proposed to involve reduction in the depolarizing activity of the Na+/K+ pump, or activation of a hyperpolarizing Cl- current. Investigations of neurotransmitter identities of glucose-sensing neurons are beginning to provide detailed information about their physiological roles. In the mouse lateral hypothalamus, orexin/hypocretin neurons (which promote wakefulness, locomotor activity and foraging) are glucose-inhibited, whereas melanin-concentrating hormone neurons (which promote sleep and energy conservation) are glucose-excited. In the hypothalamic arcuate nucleus, excitatory actions of glucose on anorexigenic POMC neurons in mice have been reported, while the appetite-promoting NPY neurons may be directly inhibited by glucose. These results stress the fundamental importance of hypothalamic glucose-sensing neurons in orchestrating sleep-wake cycles, energy expenditure and feeding behaviour.

摘要

下丘脑神经元的特定亚群对细胞外葡萄糖水平的变化表现出特定的兴奋性或抑制性电反应。传统上认为,葡萄糖兴奋神经元采用“β细胞”葡萄糖传感策略,即葡萄糖升高胞质ATP水平,这会关闭含有Kir6.2亚基的KATP通道,导致去极化并增加兴奋性。最近的研究结果表明,尽管这个经典模型的某些要素在一些下丘脑细胞中发挥作用,但这条途径对于葡萄糖对葡萄糖传感神经元的兴奋作用并非普遍必要。因此,最近在缺乏Kir6.2的小鼠中报道了葡萄糖诱导的弓状核神经元兴奋,并且在细胞外葡萄糖变化后,下丘脑神经元中未检测到胞质ATP水平的显著升高。可能的替代葡萄糖传感策略包括电生性葡萄糖内流、葡萄糖诱导的胶质细胞乳酸释放和细胞外葡萄糖受体。与兴奋相比,葡萄糖诱导的电抑制了解得要少得多,有人提出它涉及Na+/K+泵去极化活性的降低或超极化Cl-电流的激活。对葡萄糖传感神经元神经递质特性的研究开始提供有关其生理作用的详细信息。在小鼠下丘脑外侧区,食欲素/下丘脑泌素神经元(促进觉醒、运动活动和觅食)受到葡萄糖抑制,而促黑素细胞激素神经元(促进睡眠和能量保存)则受到葡萄糖兴奋。在下丘脑弓状核中,已报道葡萄糖对小鼠厌食性促肾上腺皮质激素释放激素神经元有兴奋作用,而促进食欲的神经肽Y神经元可能直接受到葡萄糖抑制。这些结果强调了下丘脑葡萄糖传感神经元在协调睡眠-觉醒周期、能量消耗和进食行为方面的根本重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索