Suppr超能文献

Near-infrared Yb(3+) vibronic sideband spectroscopy: application to Ca(2+)-binding proteins.

作者信息

Mattioli T A, Roselli C, Boussac A

机构信息

Service de Biophysique des Protéines Membranaires, Département de Biologie Cellulaire et Moléculaire, France.

出版信息

Biochim Biophys Acta. 1992 Jul 6;1101(1):121-4. doi: 10.1016/0167-4838(92)90475-s.

Abstract

We have used near-infrared (NIR) vibronic fluorescence spectroscopy to study the vibrational structure of ligands associated with model complexes of the lanthanide Yb(3+). This technique exploits the similar binding properties of the lanthanide Yb(3+) to probe Ca(2+)-binding sites in proteins. The (NIR) fluorescence of complexed Yb(3+) exhibits, in addition to main 0-0 (2F5/2----2F7/2) electronic transition of Yb(3+), weak vibronic sidebands which provide infrared-like, local vibrational spectra of the chelates (inner sphere ligands) of Yb(3+). A similar approach has been used for the lanthanide Gd(3+) (MacGregor, R.B., Jr (1989) Arch. Biochem. Biophys. 274, 312-316) which fluoresces in the UV and which is usually complicated by amino-acid residues fluorescing in the same spectral region. In this same spectral region, other complications in studying photosynthetic membranes occur in the form of the excitation wavelength being actinic, promoting photodegradation of the membranes, as well as the reabsorption of Gd(3+) fluorescence. NIR excitation and fluorescence detection of Yb(3+) avoid these problems when studying photosynthetic membranes. A preliminary study has been conducted here on rat muscle parvalbumin.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验