Suppr超能文献

将内在信号的光学成像作为小鼠皮质可塑性的一种测量方法。

Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.

作者信息

Cang Jianhua, Kalatsky Valery A, Löwel Siegrid, Stryker Michael P

机构信息

W.M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, CA 94143-0444, USA.

出版信息

Vis Neurosci. 2005 Sep-Oct;22(5):685-91. doi: 10.1017/S0952523805225178.

Abstract

The responses of cells in the visual cortex to stimulation of the two eyes changes dramatically following a period of monocular visual deprivation (MD) during a critical period in early life. This phenomenon, referred to as ocular dominance (OD) plasticity, is a widespread model for understanding cortical plasticity. In this study, we designed stimulus patterns and quantification methods to analyze OD in the mouse visual cortex using optical imaging of intrinsic signals. Using periodically drifting bars restricted to the binocular portion of the visual field, we obtained cortical maps for both contralateral (C) and ipsilateral (I) eyes and computed OD maps as (C - I)/(C + I). We defined the OD index (ODI) for individual animals as the mean of the OD map. The ODI obtained from an imaging session of less than 30 min gives reliable measures of OD for both normal and monocularly deprived mice under Nembutal anesthesia. Surprisingly, urethane anesthesia, which yields excellent topographic maps, did not produce consistent OD findings. Normal Nembutal-anesthetized mice have positive ODI (0.22 +/- 0.01), confirming a contralateral bias in the binocular zone. For mice monocularly deprived during the critical period, the ODI of the cortex contralateral to the deprived eye shifted negatively towards the nondeprived, ipsilateral eye (ODI after 2-day MD: 0.12 +/- 0.02, 4-day: 0.03 +/- 0.03, and 6- to 7-day MD: -0.01 +/- 0.04). The ODI shift induced by 4-day MD appeared to be near maximal, consistent with previous findings using single-unit recordings. We have thus established optical imaging of intrinsic signals as a fast and reliable screening method to study OD plasticity in the mouse.

摘要

在生命早期的关键期内,经历一段单眼视觉剥夺(MD)后,视觉皮层中细胞对双眼刺激的反应会发生显著变化。这种现象被称为眼优势(OD)可塑性,是理解皮层可塑性的一个广泛模型。在本研究中,我们设计了刺激模式和量化方法,利用内在信号的光学成像来分析小鼠视觉皮层中的OD。通过使用仅限于视野双眼部分的周期性漂移条纹,我们获得了对侧(C)和同侧(I)眼的皮层图谱,并计算OD图谱为(C - I)/(C + I)。我们将个体动物的OD指数(ODI)定义为OD图谱的平均值。在戊巴比妥麻醉下,从少于30分钟的成像会话中获得的ODI为正常和单眼剥夺小鼠的OD提供了可靠的测量。令人惊讶的是,能产生出色地形图的乌拉坦麻醉并未产生一致的OD结果。正常的戊巴比妥麻醉小鼠具有正的ODI(0.22±0.01),证实了双眼区域存在对侧偏好。对于在关键期内单眼剥夺的小鼠,剥夺眼对侧皮层的ODI向未剥夺的同侧眼负向偏移(2天MD后ODI:0.12±0.02,4天:0.03±0.03,6至7天MD:-0.01±0.04)。4天MD诱导的ODI偏移似乎接近最大值,与先前使用单细胞记录的结果一致。因此,我们建立了内在信号的光学成像作为一种快速可靠的筛选方法,用于研究小鼠的OD可塑性。

相似文献

1
Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.
Vis Neurosci. 2005 Sep-Oct;22(5):685-91. doi: 10.1017/S0952523805225178.
2
3
Temporally coherent visual stimuli boost ocular dominance plasticity.
J Neurosci. 2013 Jul 17;33(29):11774-8. doi: 10.1523/JNEUROSCI.4262-12.2013.
4
The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.
Neuroscience. 2016 Dec 17;339:571-586. doi: 10.1016/j.neuroscience.2016.10.014. Epub 2016 Oct 13.
5
Experience-enabled enhancement of adult visual cortex function.
J Neurosci. 2013 Mar 20;33(12):5362-6. doi: 10.1523/JNEUROSCI.5229-12.2013.
6
The critical period for ocular dominance plasticity in the Ferret's visual cortex.
J Neurosci. 1999 Aug 15;19(16):6965-78. doi: 10.1523/JNEUROSCI.19-16-06965.1999.
7
Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience.
J Neurosci. 2021 Feb 17;41(7):1470-1488. doi: 10.1523/JNEUROSCI.0548-20.2020. Epub 2020 Dec 29.
9
Anatomical correlates of functional plasticity in mouse visual cortex.
J Neurosci. 1999 Jun 1;19(11):4388-406. doi: 10.1523/JNEUROSCI.19-11-04388.1999.
10
Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
J Neurosci. 2017 Jul 5;37(27):6517-6526. doi: 10.1523/JNEUROSCI.1193-16.2017. Epub 2017 Jun 2.

引用本文的文献

1
Representational drift gates critical-period plasticity in mouse visual cortex.
Curr Biol. 2025 Sep 8;35(17):4251-4258.e3. doi: 10.1016/j.cub.2025.07.026. Epub 2025 Aug 5.
2
GABAergic signaling by VIP interneurons gates running-dependent visual recovery in the adult brain.
bioRxiv. 2025 May 23:2025.05.21.655402. doi: 10.1101/2025.05.21.655402.
5
Oligodendrocytes and myelin limit neuronal plasticity in visual cortex.
Nature. 2024 Sep;633(8031):856-863. doi: 10.1038/s41586-024-07853-8. Epub 2024 Aug 21.
6
High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7.
Neurosci Bull. 2024 Sep;40(9):1245-1260. doi: 10.1007/s12264-024-01242-x. Epub 2024 Jun 4.
7
Stimulus-specific enhancement in mouse visual cortex requires GABA but not VIP-peptide release from VIP interneurons.
J Neurophysiol. 2024 Jul 1;132(1):34-44. doi: 10.1152/jn.00463.2023. Epub 2024 May 22.
8
Psychedelics promote plasticity by directly binding to BDNF receptor TrkB.
Nat Neurosci. 2023 Jun;26(6):1032-1041. doi: 10.1038/s41593-023-01316-5. Epub 2023 Jun 5.
9
High-resolution structural and functional retinal imaging in the awake behaving mouse.
Commun Biol. 2023 May 29;6(1):572. doi: 10.1038/s42003-023-04896-x.

本文引用的文献

1
Critical period regulation.
Annu Rev Neurosci. 2004;27:549-79. doi: 10.1146/annurev.neuro.27.070203.144327.
2
Specific GABAA circuits for visual cortical plasticity.
Science. 2004 Mar 12;303(5664):1681-3. doi: 10.1126/science.1091032.
3
Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12486-91. doi: 10.1073/pnas.1934836100. Epub 2003 Sep 26.
4
Patterned vision causes CRE-mediated gene expression in the visual cortex through PKA and ERK.
J Neurosci. 2003 Aug 6;23(18):7012-20. doi: 10.1523/JNEUROSCI.23-18-07012.2003.
5
NMDA receptor-dependent ocular dominance plasticity in adult visual cortex.
Neuron. 2003 Jun 19;38(6):977-85. doi: 10.1016/s0896-6273(03)00323-4.
6
New paradigm for optical imaging: temporally encoded maps of intrinsic signal.
Neuron. 2003 May 22;38(4):529-45. doi: 10.1016/s0896-6273(03)00286-1.
7
Developmental plasticity of mouse visual acuity.
Eur J Neurosci. 2003 Jan;17(1):167-73. doi: 10.1046/j.1460-9568.2003.02420.x.
8
Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity.
Neuron. 2002 Oct 24;36(3):483-91. doi: 10.1016/s0896-6273(02)00966-2.
9
Inhibitory threshold for critical-period activation in primary visual cortex.
Nature. 2000 Mar 9;404(6774):183-6. doi: 10.1038/35004582.
10
The visual physiology of the wild type mouse determined with pattern VEPs.
Vision Res. 1999 Sep;39(18):3071-81. doi: 10.1016/s0042-6989(99)00022-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验