Liz Eduardo, Tkachenko Victor, Trofimchuk Sergei
Departamento de Matemática Aplicada II, E.T.S.I. Telecomunicación, Campus Marcosende, Universidad de Vigo, 36280 Vigo, Spain.
Math Biosci. 2006 Jan;199(1):26-37. doi: 10.1016/j.mbs.2005.03.016. Epub 2005 Dec 6.
We address the global stability issue for some discrete population models with delayed-density dependence. Applying a new approach based on the concept of the generalized Yorke conditions, we establish several criteria for the convergence of all solutions to the unique positive steady state. Our results support the conjecture stated by Levin and May in 1976 affirming that the local asymptotic stability of the equilibrium of some delay difference equations (including Ricker's and Pielou's equations) implies its global stability. We also discuss the robustness of the obtained results with respect to perturbations of the model.
我们研究了一些具有时滞密度依赖的离散种群模型的全局稳定性问题。通过应用一种基于广义约克条件概念的新方法,我们建立了几个关于所有解收敛到唯一正稳态的准则。我们的结果支持了莱文和梅在1976年提出的猜想,即某些时滞差分方程(包括里克方程和皮洛方程)平衡点的局部渐近稳定性意味着其全局稳定性。我们还讨论了所得结果相对于模型扰动的稳健性。