Klarl Barbara A, Lang Philipp A, Kempe Daniela S, Niemoeller Olivier M, Akel Ahmad, Sobiesiak Malgorzata, Eisele Kerstin, Podolski Marlis, Huber Stephan M, Wieder Thomas, Lang Florian
Department of Physiology, University of Tübingen, Tübingen, Germany.
Am J Physiol Cell Physiol. 2006 Jan;290(1):C244-53. doi: 10.1152/ajpcell.00283.2005.
Glucose depletion of erythrocytes leads to activation of Ca2+-permeable cation channels, Ca2+ entry, activation of a Ca2+-sensitive erythrocyte scramblase, and subsequent exposure of phosphatidylserine at the erythrocyte surface. Ca2+ entry into erythrocytes was previously shown to be stimulated by phorbol esters and to be inhibited by staurosporine and chelerythrine and is thus thought to be regulated by protein phosphorylation/dephosphorylation, presumably via protein kinase C (PKC) and the corresponding phosphoserine/threonine phosphatases. The present experiments explored whether PKC could contribute to effects of energy depletion on erythrocyte phosphatidylserine exposure and cell volume. Phosphatidylserine exposure was estimated from annexin binding and cell volume from forward scatter in fluorescence-activated cell sorter analysis. Removal of extracellular glucose led to depletion of cellular ATP, stimulated PKC activity, led to translocation of PKCalpha, enhanced serine phosphorylation of membrane proteins, decreased cell volume, and increased annexin binding, the latter effect being blunted but not abolished in the presence of 1 microM staurosporine or 50 nM calphostin C. The PKC stimulator phorbol-12-myristate-13-acetate (3 microM) and the phosphatase inhibitor okadaic acid (1-10 microM) mimicked the effect of glucose depletion and similarly led to translocation of PKCalpha and enhanced serine phosphorylation, increased annexin binding, and decreased forward scatter, the latter effects being abrogated by PKC inhibitor staurosporine (1 microM). Fluo-3 fluorescence measurements revealed that okadaic acid also enhanced erythrocyte Ca2+ activity. The present observations suggest that protein phosphorylation and dephosphorylation via PKC and the corresponding protein phosphatases contribute to phosphatidylserine exposure and cell shrinkage after energy depletion.
红细胞的葡萄糖耗竭会导致钙离子通透阳离子通道的激活、钙离子内流、钙离子敏感的红细胞翻转酶的激活,以及随后磷脂酰丝氨酸在红细胞表面的暴露。先前已表明,钙离子进入红细胞会受到佛波酯的刺激,并受到星形孢菌素和白屈菜红碱的抑制,因此被认为是由蛋白质磷酸化/去磷酸化调节的,推测是通过蛋白激酶C(PKC)和相应的磷酸丝氨酸/苏氨酸磷酸酶。本实验探讨了PKC是否会对能量耗竭对红细胞磷脂酰丝氨酸暴露和细胞体积的影响有作用。通过膜联蛋白结合来估计磷脂酰丝氨酸的暴露情况,并通过荧光激活细胞分选分析中的前向散射来估计细胞体积。去除细胞外葡萄糖会导致细胞内ATP耗竭,刺激PKC活性,导致PKCα易位,增强膜蛋白的丝氨酸磷酸化,减小细胞体积,并增加膜联蛋白结合,在存在1微摩尔星形孢菌素或50纳摩尔钙磷蛋白C的情况下,后一种效应会减弱但不会消除。PKC刺激剂佛波醇-12-肉豆蔻酸酯-13-乙酸酯(3微摩尔)和磷酸酶抑制剂冈田酸(1 - 10微摩尔)模拟了葡萄糖耗竭的作用,同样导致PKCα易位和丝氨酸磷酸化增强,增加膜联蛋白结合,并减小前向散射,后一种效应被PKC抑制剂星形孢菌素(1微摩尔)消除。Fluo-3荧光测量显示,冈田酸也增强了红细胞的钙离子活性。目前的观察结果表明,通过PKC和相应的蛋白磷酸酶进行的蛋白质磷酸化和去磷酸化有助于能量耗竭后磷脂酰丝氨酸的暴露和细胞收缩。