Suppr超能文献

传统驱动蛋白在体内介导微管与微管之间的相互作用。

Conventional kinesin mediates microtubule-microtubule interactions in vivo.

作者信息

Straube Anne, Hause Gerd, Fink Gero, Steinberg Gero

机构信息

Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany.

出版信息

Mol Biol Cell. 2006 Feb;17(2):907-16. doi: 10.1091/mbc.e05-06-0542. Epub 2005 Dec 7.

Abstract

Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.

摘要

传统驱动蛋白是一种普遍存在的细胞器转运蛋白,可将货物向微管的正端移动。此外,多项体外研究表明传统驱动蛋白在微管的交联和滑动中发挥作用,但缺乏这种作用的体内证据。在本研究中,我们表明传统驱动蛋白在模式真菌玉米黑粉菌中介导微管-微管相互作用。对Kin1中各种突变体的活细胞成像和超微结构分析表明,这种驱动蛋白-1马达对于有效的微管成束是必需的,并参与体内微管弯曲。高水平的Kin1导致微管弯曲增加,而马达头部的僵直突变抑制了所有微管运动并促进了强烈的微管成束,表明驱动蛋白可以在活细胞中的微管之间形成交联桥。这种效应需要Kin1 C末端的一个保守区域,该区域在体外已被证明可结合微管。此外,黄色荧光蛋白与Kin1尾部的融合蛋白定位于微管束,进一步支持了传统驱动蛋白尾部保守的微管结合活性在体内介导微管-微管相互作用的观点。

相似文献

1
Conventional kinesin mediates microtubule-microtubule interactions in vivo.
Mol Biol Cell. 2006 Feb;17(2):907-16. doi: 10.1091/mbc.e05-06-0542. Epub 2005 Dec 7.
2
Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis.
Mol Biol Cell. 2005 Nov;16(11):5191-201. doi: 10.1091/mbc.e05-04-0272. Epub 2005 Aug 24.
4
Kinesin-3 in the basidiomycete Ustilago maydis transports organelles along the entire microtubule array.
Fungal Genet Biol. 2015 Jan;74:59-61. doi: 10.1016/j.fgb.2014.10.010. Epub 2014 Oct 18.
5
Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes.
J Cell Sci. 2012 Jun 1;125(Pt 11):2740-52. doi: 10.1242/jcs.101212. Epub 2012 Feb 22.
6
Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis.
Mol Biol Cell. 2002 Mar;13(3):965-77. doi: 10.1091/mbc.01-10-0475.
7
Cryo-EM structure of the Ustilago maydis kinesin-5 motor domain bound to microtubules.
J Struct Biol. 2019 Sep 1;207(3):312-316. doi: 10.1016/j.jsb.2019.07.003. Epub 2019 Jul 6.
8
The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules.
J Cell Sci. 2006 Dec 1;119(Pt 23):4964-73. doi: 10.1242/jcs.03287. Epub 2006 Nov 14.
10
A dynein loading zone for retrograde endosome motility at microtubule plus-ends.
EMBO J. 2006 Jun 7;25(11):2275-86. doi: 10.1038/sj.emboj.7601119. Epub 2006 May 11.

引用本文的文献

1
A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease.
Open Biol. 2024 Jun;14(6):240041. doi: 10.1098/rsob.240041. Epub 2024 Jun 5.
2
Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer.
Adv Sci (Weinh). 2023 Nov;10(31):e2302229. doi: 10.1002/advs.202302229. Epub 2023 Sep 19.
3
5
Kinesin-3 motors are fine-tuned at the molecular level to endow distinct mechanical outputs.
BMC Biol. 2022 Aug 10;20(1):177. doi: 10.1186/s12915-022-01370-8.
6
Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision.
Front Cell Dev Biol. 2022 Jul 8;10:915206. doi: 10.3389/fcell.2022.915206. eCollection 2022.
8
Deformation of microtubules regulates translocation dynamics of kinesin.
Sci Adv. 2021 Oct 15;7(42):eabf2211. doi: 10.1126/sciadv.abf2211. Epub 2021 Oct 13.
9
Enhancing mask activity in dopaminergic neurons extends lifespan in flies.
Aging Cell. 2021 Nov;20(11):e13493. doi: 10.1111/acel.13493. Epub 2021 Oct 9.
10
Unconventional Roles of Cytoskeletal Mitotic Machinery in Neurodevelopment.
Trends Cell Biol. 2019 Nov;29(11):901-911. doi: 10.1016/j.tcb.2019.08.006. Epub 2019 Oct 6.

本文引用的文献

1
Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis.
Proc Natl Acad Sci U S A. 1989 Aug;86(15):5878-82. doi: 10.1073/pnas.86.15.5878.
2
Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis.
Mol Biol Cell. 2005 Nov;16(11):5191-201. doi: 10.1091/mbc.e05-04-0272. Epub 2005 Aug 24.
3
A standardized kinesin nomenclature.
J Cell Biol. 2004 Oct 11;167(1):19-22. doi: 10.1083/jcb.200408113.
4
Calcium signaling is involved in dynein-dependent microtubule organization.
Mol Biol Cell. 2004 Apr;15(4):1969-80. doi: 10.1091/mbc.e03-09-0675. Epub 2004 Jan 23.
5
Kinesin motors and microtubule-based organelle transport in Dictyostelium discoideum.
J Muscle Res Cell Motil. 2002;23(7-8):631-8. doi: 10.1023/a:1024403006680.
6
Dynamic microtubules in Dictyostelium.
J Muscle Res Cell Motil. 2002;23(7-8):613-9. doi: 10.1023/a:1024446821701.
7
A complete inventory of fungal kinesins in representative filamentous ascomycetes.
Fungal Genet Biol. 2003 Jun;39(1):1-15. doi: 10.1016/s1087-1845(03)00022-7.
8
The second microtubule-binding site of monomeric kid enhances the microtubule affinity.
J Biol Chem. 2003 Jun 20;278(25):22460-5. doi: 10.1074/jbc.M212274200. Epub 2003 Apr 12.
10
The molecular motors of cilia and eukaryotic flagella.
Essays Biochem. 2000;35:103-15. doi: 10.1042/bse0350103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验