Suppr超能文献

动力蛋白-3 分子马达在分子水平上的精确调节赋予了其独特的力学输出。

Kinesin-3 motors are fine-tuned at the molecular level to endow distinct mechanical outputs.

机构信息

Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.

Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India.

出版信息

BMC Biol. 2022 Aug 10;20(1):177. doi: 10.1186/s12915-022-01370-8.

Abstract

BACKGROUND

Kinesin-3 family motors drive diverse cellular processes and have significant clinical importance. The ATPase cycle is integral to the processive motility of kinesin motors to drive long-distance intracellular transport. Our previous work has demonstrated that kinesin-3 motors are fast and superprocessive with high microtubule affinity. However, chemomechanics of these motors remain poorly understood.

RESULTS

We purified kinesin-3 motors using the Sf9-baculovirus expression system and demonstrated that their motility properties are on par with the motors expressed in mammalian cells. Using biochemical analysis, we show for the first time that kinesin-3 motors exhibited high ATP turnover rates, which is 1.3- to threefold higher compared to the well-studied kinesin-1 motor. Remarkably, these ATPase rates correlate to their stepping rate, suggesting a tight coupling between chemical and mechanical cycles. Intriguingly, kinesin-3 velocities (KIF1A > KIF13A > KIF13B > KIF16B) show an inverse correlation with their microtubule-binding affinities (KIF1A < KIF13A < KIF13B < KIF16B). We demonstrate that this differential microtubule-binding affinity is largely contributed by the positively charged residues in loop8 of the kinesin-3 motor domain. Furthermore, microtubule gliding and cellular expression studies displayed significant microtubule bending that is influenced by the positively charged insert in the motor domain, K-loop, a hallmark of kinesin-3 family.

CONCLUSIONS

Together, we propose that a fine balance between the rate of ATP hydrolysis and microtubule affinity endows kinesin-3 motors with distinct mechanical outputs. The K-loop, a positively charged insert in the loop12 of the kinesin-3 motor domain promotes microtubule bending, an interesting phenomenon often observed in cells, which requires further investigation to understand its cellular and physiological significance.

摘要

背景

驱动多种细胞过程的驱动蛋白-3 家族马达具有重要的临床意义。ATP 酶循环是驱动马达进行长距离细胞内运输的关键。我们之前的工作表明,驱动蛋白-3 马达具有快速、超顺行和高微管亲和力的特点。然而,这些马达的化学机械性质仍知之甚少。

结果

我们使用 Sf9-杆状病毒表达系统纯化了驱动蛋白-3 马达,并证明它们的运动特性与在哺乳动物细胞中表达的马达相当。通过生化分析,我们首次表明驱动蛋白-3 马达具有高的 ATP 周转率,比研究得很好的驱动蛋白-1 马达高 1.3 到 3 倍。值得注意的是,这些 ATP 酶速率与它们的步移率相关,表明化学和机械循环之间存在紧密的偶联。有趣的是,驱动蛋白-3 的速度(KIF1A>KIF13A>KIF13B>KIF16B)与它们的微管结合亲和力呈反比(KIF1A<KIF13A<KIF13B<KIF16B)。我们证明,这种差异的微管结合亲和力主要是由驱动蛋白-3 马达结构域的环 8 中的正电荷残基贡献的。此外,微管滑行和细胞表达研究显示出显著的微管弯曲,这受到马达结构域中的正电荷插入物,即 K 环的影响,这是驱动蛋白-3 家族的一个特征。

结论

综上所述,我们提出,ATP 水解速率和微管亲和力之间的精细平衡赋予了驱动蛋白-3 马达独特的机械输出。驱动蛋白-3 马达结构域的环 12 中的正电荷插入物 K 环促进微管弯曲,这是细胞中经常观察到的一个有趣现象,需要进一步研究以了解其细胞和生理意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9c/9364601/c01be7eedeb5/12915_2022_1370_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验