Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.
Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India.
BMC Biol. 2022 Aug 10;20(1):177. doi: 10.1186/s12915-022-01370-8.
Kinesin-3 family motors drive diverse cellular processes and have significant clinical importance. The ATPase cycle is integral to the processive motility of kinesin motors to drive long-distance intracellular transport. Our previous work has demonstrated that kinesin-3 motors are fast and superprocessive with high microtubule affinity. However, chemomechanics of these motors remain poorly understood.
We purified kinesin-3 motors using the Sf9-baculovirus expression system and demonstrated that their motility properties are on par with the motors expressed in mammalian cells. Using biochemical analysis, we show for the first time that kinesin-3 motors exhibited high ATP turnover rates, which is 1.3- to threefold higher compared to the well-studied kinesin-1 motor. Remarkably, these ATPase rates correlate to their stepping rate, suggesting a tight coupling between chemical and mechanical cycles. Intriguingly, kinesin-3 velocities (KIF1A > KIF13A > KIF13B > KIF16B) show an inverse correlation with their microtubule-binding affinities (KIF1A < KIF13A < KIF13B < KIF16B). We demonstrate that this differential microtubule-binding affinity is largely contributed by the positively charged residues in loop8 of the kinesin-3 motor domain. Furthermore, microtubule gliding and cellular expression studies displayed significant microtubule bending that is influenced by the positively charged insert in the motor domain, K-loop, a hallmark of kinesin-3 family.
Together, we propose that a fine balance between the rate of ATP hydrolysis and microtubule affinity endows kinesin-3 motors with distinct mechanical outputs. The K-loop, a positively charged insert in the loop12 of the kinesin-3 motor domain promotes microtubule bending, an interesting phenomenon often observed in cells, which requires further investigation to understand its cellular and physiological significance.
驱动多种细胞过程的驱动蛋白-3 家族马达具有重要的临床意义。ATP 酶循环是驱动马达进行长距离细胞内运输的关键。我们之前的工作表明,驱动蛋白-3 马达具有快速、超顺行和高微管亲和力的特点。然而,这些马达的化学机械性质仍知之甚少。
我们使用 Sf9-杆状病毒表达系统纯化了驱动蛋白-3 马达,并证明它们的运动特性与在哺乳动物细胞中表达的马达相当。通过生化分析,我们首次表明驱动蛋白-3 马达具有高的 ATP 周转率,比研究得很好的驱动蛋白-1 马达高 1.3 到 3 倍。值得注意的是,这些 ATP 酶速率与它们的步移率相关,表明化学和机械循环之间存在紧密的偶联。有趣的是,驱动蛋白-3 的速度(KIF1A>KIF13A>KIF13B>KIF16B)与它们的微管结合亲和力呈反比(KIF1A<KIF13A<KIF13B<KIF16B)。我们证明,这种差异的微管结合亲和力主要是由驱动蛋白-3 马达结构域的环 8 中的正电荷残基贡献的。此外,微管滑行和细胞表达研究显示出显著的微管弯曲,这受到马达结构域中的正电荷插入物,即 K 环的影响,这是驱动蛋白-3 家族的一个特征。
综上所述,我们提出,ATP 水解速率和微管亲和力之间的精细平衡赋予了驱动蛋白-3 马达独特的机械输出。驱动蛋白-3 马达结构域的环 12 中的正电荷插入物 K 环促进微管弯曲,这是细胞中经常观察到的一个有趣现象,需要进一步研究以了解其细胞和生理意义。