Friedman D S, Vale R D
Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA.
Nat Cell Biol. 1999 Sep;1(5):293-7. doi: 10.1038/13008.
Conventional kinesin transports membranes along microtubules in vivo, but the majority of cellular kinesin is unattached to cargo. The motility of non-cargo-bound, soluble kinesin may be repressed by an interaction between the amino-terminal motor and carboxy-terminal cargo-binding tail domains, but neither bead nor microtubule-gliding assays have shown such inhibition. Here we use a single-molecule assay that measures the motility of kinesin unattached to a surface. We show that full-length kinesin binds microtubules and moves about ten times less frequently and exhibits discontinuous motion compared with a truncated kinesin lacking a tail. Mutation of either the stalk hinge or neck coiled-coil domain activates motility of full-length kinesin, indicating that these regions are important for tail-mediated repression. Our results suggest that the motility of soluble kinesin in the cell is inhibited and that the motor becomes activated by cargo binding.
传统的驱动蛋白在体内沿着微管运输膜,但大多数细胞中的驱动蛋白并未与货物结合。非货物结合的可溶性驱动蛋白的运动性可能会受到氨基末端马达结构域和羧基末端货物结合尾部结构域之间相互作用的抑制,但珠粒试验和微管滑动试验均未显示出这种抑制作用。在这里,我们使用一种单分子试验来测量未附着于表面的驱动蛋白的运动性。我们发现,与缺少尾部的截短驱动蛋白相比,全长驱动蛋白与微管结合且移动频率低约十倍,并且呈现不连续运动。茎部铰链区或颈部卷曲螺旋结构域的突变会激活全长驱动蛋白的运动性,表明这些区域对于尾部介导的抑制作用很重要。我们的结果表明,细胞中可溶性驱动蛋白的运动性受到抑制,并且马达通过货物结合而被激活。