Suppr超能文献

与致心律失常突变相关的兰尼碱受体自身调节缺陷揭示了钙离子释放通道功能障碍的新机制。

Arrhythmogenic mutation-linked defects in ryanodine receptor autoregulation reveal a novel mechanism of Ca2+ release channel dysfunction.

作者信息

George Christopher H, Jundi Hala, Walters Nicola, Thomas N Lowri, West Robert R, Lai F Anthony

机构信息

Department of Cardiology, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK.

出版信息

Circ Res. 2006 Jan 6;98(1):88-97. doi: 10.1161/01.RES.0000199296.70534.7c. Epub 2005 Dec 8.

Abstract

Arrhythmogenic cardiac ryanodine receptor (RyR2) mutations are associated with stress-induced malignant tachycardia, frequently leading to sudden cardiac death (SCD). The causative mechanisms of RyR2 Ca2+ release dysregulation are complex and remain controversial. We investigated the functional impact of clinically-severe RyR2 mutations occurring in the central domain, and the C-terminal I domain, a key locus of RyR2 autoregulation, on interdomain interactions and Ca2+ release in living cells. Using high-resolution confocal microscopy and fluorescence resonance energy transfer (FRET) analysis of interaction between fusion proteins corresponding to amino- (N-) and carboxyl- (C-) terminal RyR2 domains, we determined that in resting cells, RyR2 interdomain interaction remained unaltered after introduction of SCD-linked mutations and normal Ca2+ regulation was maintained. In contrast, after channel activation, the abnormal Ca2+ release via mutant RyR2 was intrinsically linked to altered interdomain interaction that was equivalent with all mutations and exhibited threshold characteristics (caffeine >2.5 mmol/L; Ca2+ >150 nmol/L). Noise analysis revealed that I domain mutations introduced a distinct pattern of conformational instability in Ca2+ handling and interdomain interaction after channel activation that was absent in signals obtained from the central domain mutation. I domain-linked channel instability also occurred in intact RyR2 expressed in CHO cells and in HL-1 cardiomyocytes. These new insights highlight a critical role for mutation-linked defects in channel autoregulation, and may contribute to a molecular explanation for the augmented Ca2+ release following RyR2 channel activation. Our findings also suggest that the mutational locus may be an important mechanistic determinant of Ca2+ release channel dysfunction in arrhythmia and SCD.

摘要

致心律失常性心脏兰尼碱受体(RyR2)突变与应激诱导的恶性心动过速相关,常导致心源性猝死(SCD)。RyR2钙释放失调的致病机制复杂且仍存在争议。我们研究了发生在中央结构域以及C末端I结构域(RyR2自身调节的关键位点)的临床严重RyR2突变对活细胞中结构域间相互作用和钙释放的功能影响。通过使用高分辨率共聚焦显微镜以及对对应于氨基(N)末端和羧基(C)末端RyR2结构域的融合蛋白之间的相互作用进行荧光共振能量转移(FRET)分析,我们确定在静息细胞中,引入与SCD相关的突变后,RyR2结构域间相互作用保持不变,并且钙调节维持正常。相比之下,通道激活后,通过突变型RyR2的异常钙释放与结构域间相互作用的改变内在相关,所有突变的情况均相同,并且表现出阈值特征(咖啡因>2.5 mmol/L;钙>150 nmol/L)。噪声分析显示,I结构域突变在通道激活后在钙处理和结构域间相互作用中引入了一种独特的构象不稳定性模式,而中央结构域突变获得的信号中不存在这种模式。I结构域相关的通道不稳定性也发生在CHO细胞和HL-1心肌细胞中表达的完整RyR2中。这些新见解突出了通道自身调节中与突变相关的缺陷的关键作用,并可能有助于从分子层面解释RyR2通道激活后钙释放增加的现象。我们的研究结果还表明,突变位点可能是心律失常和SCD中钙释放通道功能障碍的重要机制决定因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验