Jones Denise F, Stenzel Rachelle A, Donohue Timothy J
Department of Bacteriology, University of Wisconsin-Madison, Room 390B, 420 Henry Mall, Madison, WI 53706, USA.
Microbiology (Reading). 2005 Dec;151(Pt 12):4103-4110. doi: 10.1099/mic.0.28300-0.
The Rhodobacter sphaeroides response regulator PrrA directly activates transcription of genes necessary for energy conservation at low O2 tensions and under anaerobic conditions. It is proposed that PrrA homologues contain a C-terminal DNA-binding domain (PrrA-CTD) that lacks significant amino acid sequence similarity to those found in other response regulators. To test this hypothesis, single amino acid substitutions were created at 12 residues in the PrrA-CTD. These mutant PrrA proteins were purified and tested for the ability to be phosphorylated by the low-molecular-mass phosphate donor acetyl phosphate, to activate transcription and to bind promoter DNA. Each mutant PrrA protein accepted phosphate from 32P-labelled acetyl phosphate. At micromolar concentrations of acetyl phosphate-treated wild-type PrrA, a single 20 bp region in the PrrA-dependent cycA P2 promoter was protected from DNase I digestion. Of the mutant PrrA proteins tested, only acetyl phosphate-treated PrrA-N168A and PrrA-I177A protected cycA P2 from DNase I digestion at similar protein concentrations compared to wild-type PrrA. The use of in vitro transcription assays with the PrrA-dependent cycA P2 and puc promoters showed that acetyl phosphate-treated PrrA-N168A produced transcript levels similar to that of wild-type PrrA at comparable protein concentrations. Using concentrations of acetyl phosphate-treated PrrA that are saturating for the wild-type protein, PrrA-H170A and PrrA-I177A produced <45 % as much transcript as wild-type PrrA. Under identical conditions, the remaining mutant PrrA proteins produced little or no detectable transcripts from either promoter in vitro. Explanations are presented for why these amino acid side chains in the PrrA-CTD are important for its ability to activate transcription.
球形红杆菌应答调节蛋白PrrA在低氧张力和厌氧条件下直接激活能量守恒所需基因的转录。有人提出,PrrA同源物含有一个C端DNA结合结构域(PrrA-CTD),该结构域与其他应答调节蛋白中的结构域缺乏显著的氨基酸序列相似性。为了验证这一假设,在PrrA-CTD的12个残基处进行了单氨基酸替换。这些突变的PrrA蛋白被纯化,并测试其被低分子量磷酸盐供体乙酰磷酸磷酸化、激活转录和结合启动子DNA的能力。每个突变的PrrA蛋白都能从³²P标记的乙酰磷酸中接受磷酸盐。在微摩尔浓度的乙酰磷酸处理的野生型PrrA中,PrrA依赖的cycA P2启动子中的一个20 bp区域受到保护,不被DNase I消化。在测试的突变PrrA蛋白中,与野生型PrrA相比,只有乙酰磷酸处理的PrrA-N168A和PrrA-I177A在相似的蛋白质浓度下能保护cycA P2不被DNase I消化。使用PrrA依赖的cycA P2和puc启动子进行体外转录分析表明,在相当的蛋白质浓度下,乙酰磷酸处理的PrrA-N168A产生的转录水平与野生型PrrA相似。使用对野生型蛋白饱和的乙酰磷酸处理的PrrA浓度,PrrA-H170A和PrrA-I177A产生的转录本不到野生型PrrA的45%。在相同条件下,其余突变的PrrA蛋白在体外从任何一个启动子产生的可检测转录本很少或没有。文中对PrrA-CTD中的这些氨基酸侧链为何对其激活转录的能力很重要给出了解释。