Suppr超能文献

不同的HECT结构域泛素连接酶采用不同的多聚泛素链合成机制。

Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis.

作者信息

Wang Min, Pickart Cecile M

机构信息

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

EMBO J. 2005 Dec 21;24(24):4324-33. doi: 10.1038/sj.emboj.7600895. Epub 2005 Dec 8.

Abstract

Individual ubiquitin (Ub)-protein ligases (E3s) cooperate with specific Ub-conjugating enzymes (E2s) to modify cognate substrates with polyubiquitin chains. E3s belonging to the Really Interesting New Gene (RING) and Homologous to E6-Associated Protein (E6AP) C-Terminus (HECT) domain families utilize distinct molecular mechanisms. In particular, HECT E3s, but not RING E3s, form a thiol ester with Ub before transferring Ub to the substrate lysine. Here we report that different HECT domain E3s can employ distinct mechanisms of polyubiquitin chain synthesis. We show that E6AP builds up a K48-linked chain on its HECT cysteine residue, while KIAA10 builds up K48- and K29-linked chains as free entities. A small region near the N-terminus of the conserved HECT domain helps to bring about this functional distinction. Thus, a given HECT domain can specify both the linkage of a polyubiquitin chain and the mechanism of its assembly.

摘要

单个泛素(Ub)-蛋白连接酶(E3)与特定的Ub结合酶(E2)协同作用,用多聚泛素链修饰同源底物。属于真正有趣的新基因(RING)和与E6相关蛋白(E6AP)C末端同源(HECT)结构域家族的E3利用不同的分子机制。特别是,HECT E3而非RING E3在将Ub转移到底物赖氨酸之前会与Ub形成硫酯。在此我们报道,不同的HECT结构域E3可以采用不同的多聚泛素链合成机制。我们发现E6AP在其HECT半胱氨酸残基上形成K48连接的链,而KIAA10则以游离实体形式形成K48和K29连接的链。保守HECT结构域N末端附近的一个小区域有助于实现这种功能差异。因此,给定的HECT结构域既可以指定多聚泛素链的连接方式,也可以指定其组装机制。

相似文献

1
Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis.
EMBO J. 2005 Dec 21;24(24):4324-33. doi: 10.1038/sj.emboj.7600895. Epub 2005 Dec 8.
2
Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase.
EMBO J. 2006 Apr 19;25(8):1710-9. doi: 10.1038/sj.emboj.7601061. Epub 2006 Apr 6.
3
Polyubiquitination by HECT E3s and the determinants of chain type specificity.
Mol Cell Biol. 2009 Jun;29(12):3307-18. doi: 10.1128/MCB.00240-09. Epub 2009 Apr 13.
5
Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase.
J Biol Chem. 2017 Jun 23;292(25):10398-10413. doi: 10.1074/jbc.M117.789479. Epub 2017 May 1.
6
Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity.
J Biol Chem. 1997 May 23;272(21):13548-54. doi: 10.1074/jbc.272.21.13548.
7
A HECT domain E3 enzyme assembles novel polyubiquitin chains.
J Biol Chem. 2001 Jun 8;276(23):19871-8. doi: 10.1074/jbc.M100034200. Epub 2001 Mar 14.
8
Ubiquitin chain specificities of E6AP E3 ligase and its HECT domain.
Biochem Biophys Res Commun. 2018 Feb 5;496(2):686-692. doi: 10.1016/j.bbrc.2017.12.076. Epub 2017 Dec 27.
9
Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases.
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18890-5. doi: 10.1073/pnas.0509418102. Epub 2005 Dec 19.

引用本文的文献

1
The Ubiquitin Tale: Current Strategies and Future Challenges.
ACS Pharmacol Transl Sci. 2024 Sep 4;7(9):2573-2587. doi: 10.1021/acsptsci.4c00278. eCollection 2024 Sep 13.
2
Bacterial ligases reveal fundamental principles of polyubiquitin specificity.
Mol Cell. 2023 Dec 21;83(24):4538-4554.e4. doi: 10.1016/j.molcel.2023.11.017. Epub 2023 Dec 12.
3
Structural Dynamics of E6AP E3 Ligase HECT Domain and Involvement of a Flexible Hinge Loop in the Ubiquitin Chain Synthesis Mechanism.
Nano Lett. 2023 Dec 27;23(24):11940-11948. doi: 10.1021/acs.nanolett.3c04150. Epub 2023 Dec 6.
4
Preserving genome integrity: The vital role of SUMO-targeted ubiquitin ligases.
Cell Insight. 2023 Oct 23;2(6):100128. doi: 10.1016/j.cellin.2023.100128. eCollection 2023 Dec.
6
Bacterial mimicry of eukaryotic HECT ubiquitin ligation.
bioRxiv. 2023 Jun 5:2023.06.05.543783. doi: 10.1101/2023.06.05.543783.
7
Ubiquitin-modifying enzymes in Huntington's disease.
Front Mol Biosci. 2023 Feb 8;10:1107323. doi: 10.3389/fmolb.2023.1107323. eCollection 2023.
8
Exploration on the Mechanism of Ubiquitin Proteasome System in Cerebral Stroke.
Front Aging Neurosci. 2022 Apr 7;14:814463. doi: 10.3389/fnagi.2022.814463. eCollection 2022.
9
E3 Ubiquitin Ligases in Breast Cancer Metastasis: A Systematic Review of Pathogenic Functions and Clinical Implications.
Front Oncol. 2021 Oct 22;11:752604. doi: 10.3389/fonc.2021.752604. eCollection 2021.
10
Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders.
Front Aging Neurosci. 2021 Jun 25;13:690293. doi: 10.3389/fnagi.2021.690293. eCollection 2021.

本文引用的文献

1
Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain.
Mol Cell. 2005 Aug 5;19(3):297-308. doi: 10.1016/j.molcel.2005.06.028.
2
Targeted protein degradation.
Curr Opin Chem Biol. 2005 Feb;9(1):51-5. doi: 10.1016/j.cbpa.2004.10.012.
3
Function and regulation of cullin-RING ubiquitin ligases.
Nat Rev Mol Cell Biol. 2005 Jan;6(1):9-20. doi: 10.1038/nrm1547.
4
Ubiquitin: structures, functions, mechanisms.
Biochim Biophys Acta. 2004 Nov 29;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019.
5
Polyubiquitin chains: polymeric protein signals.
Curr Opin Chem Biol. 2004 Dec;8(6):610-6. doi: 10.1016/j.cbpa.2004.09.009.
6
Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein.
J Biol Chem. 2004 Sep 24;279(39):41208-17. doi: 10.1074/jbc.M401302200. Epub 2004 Jul 19.
9
10
Back to the future with ubiquitin.
Cell. 2004 Jan 23;116(2):181-90. doi: 10.1016/s0092-8674(03)01074-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验