Suppr超能文献

神经元形态以及膜通透性弱酸和弱碱对蜗牛神经元去极化诱导的pH梯度消散的影响。

The effect of neuronal morphology and membrane-permeant weak acid and base on the dissipation of depolarization-induced pH gradients in snail neurons.

作者信息

Pantazis A, Keegan P, Postma M, Schwiening C J

机构信息

Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.

出版信息

Pflugers Arch. 2006 May;452(2):175-87. doi: 10.1007/s00424-005-0019-4. Epub 2005 Dec 10.

Abstract

Neuronal depolarization causes larger intracellular pH (pH(i)) shifts in axonal and dendritic regions than in the cell body. In this paper, we present evidence relating the time for collapse of these gradients to neuronal morphology. We have used ratiometric pH(i) measurements using 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in whole-cell patch-clamped snail neurons to study the collapse of longitudinal pH gradients. Using depolarization to open voltage-gated proton channels, we produced alkaline pH(i) microdomains. In the absence of added mobile buffers, facilitated H(+) diffusion down the length of the axon plays a critical role in determining pH(i) microdomain lifetime, with axons of approximately 100 microm allowing pH differences to be maintained for >60 s. An application of mobile, membrane-permeant pH buffers accelerated the collapse of the alkaline-pH gradients but, even at 30 mM, was unable to abolish them. Modeling of the pH(i) dynamics showed that both the relatively weak effect of the weak acid/base on the peak size of the pH gradient and the accelerated collapse of the pH gradient could be due to the time taken for equilibration of the weak acid and base across the cell. We propose that appropriate weak acid/base mixes may provide a simple method for studying the role of local pH(i) signals without perturbing steady-state pH(i). Furthermore, an extrapolation of our in vitro data to longer and thinner neuronal structures found in the mammalian nervous system suggests that dendritic and axonal pH(i) are likely to be dominated by local pH(i)-regulating mechanisms rather than simply following the soma pH(i).

摘要

神经元去极化导致轴突和树突区域的细胞内pH值(pH(i))变化比细胞体中的变化更大。在本文中,我们提供了将这些梯度消失的时间与神经元形态相关联的证据。我们使用全细胞膜片钳记录的蜗牛神经元中基于8-羟基芘-1,3,6-三磺酸(HPTS)的比率测量法来研究纵向pH梯度的消失。利用去极化打开电压门控质子通道,我们产生了碱性pH(i)微区。在没有添加可移动缓冲剂的情况下,H(+)沿轴突长度的促进扩散在决定pH(i)微区寿命方面起着关键作用,约100微米的轴突能够使pH差异维持>60秒。应用可移动的、膜通透性的pH缓冲剂加速了碱性pH梯度的消失,但即使在30 mM时也无法消除它们。pH(i)动力学模型表明,弱酸/碱对pH梯度峰值大小的相对较弱影响以及pH梯度的加速消失可能是由于弱酸和碱在整个细胞中达到平衡所需的时间。我们提出,合适的弱酸/碱混合物可能提供一种简单的方法来研究局部pH(i)信号的作用,而不会干扰稳态pH(i)。此外,将我们的体外数据外推到哺乳动物神经系统中发现的更长更细的神经元结构表明,树突和轴突的pH(i)可能主要由局部pH(i)调节机制决定,而不是简单地跟随胞体的pH(i)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验