Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany.
Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany.
FEBS J. 2020 Nov;287(22):4996-5018. doi: 10.1111/febs.15291. Epub 2020 Apr 6.
The H 1 voltage-gated proton (H 1) channel is a key component of the cellular proton extrusion machinery and is pivotal for charge compensation during the respiratory burst of phagocytes. The best-described physiological inhibitor of H 1 is Zn . Externally applied ZnCl drastically reduces proton currents reportedly recorded in Homo sapiens, Rattus norvegicus, Mus musculus, Oryctolagus cuniculus, Rana esculenta, Helix aspersa, Ciona intestinalis, Coccolithus pelagicus, Emiliania huxleyi, Danio rerio, Helisoma trivolvis, and Lingulodinium polyedrum, but with considerable species variability. Here, we report the effects of Zn and Cd on H 1 from Nicoletia phytophila, NpH 1. We introduced mutations at potential Zn coordination sites and measured Zn inhibition in different extracellular pH, with Zn concentrations up to 1000 μm. Zn inhibition in NpH 1 was quantified by the slowing of the activation time constant and a positive shift of the conductance-voltage curve. Replacing aspartate in the S3-S4 loop with histidine (D145H) enhanced both the slowing of activation kinetics and the shift in the voltage-conductance curve, such that Zn inhibition closely resembled that of the human channel. Histidine is much more effective than aspartate in coordinating Zn in the S3-S4 linker. A simple Hodgkin Huxley model of NpH 1 suggests a decrease in the opening rate if it is inhibited by zinc or cadmium. Limiting slope measurements and high-resolution clear native gel electrophoresis (hrCNE) confirmed that NpH 1 functions as a dimer. The data support the hypothesis that zinc is coordinated in between the dimer instead of the monomer. Zinc coordination sites may be potential targets for drug development.
H 1 电压门控质子 (H 1) 通道是细胞质子外排机制的关键组成部分,对于吞噬细胞呼吸爆发期间的电荷补偿至关重要。H 1 的最佳生理抑制剂是 Zn 。据报道,在人类、大鼠、小鼠、兔、牛蛙、海兔、秀丽隐杆线虫、石莼、pelagicus 球石藻、huxleyi 藻、斑马鱼、三角帆蚌和多室藻中,外源性应用 ZnCl 可大大减少质子电流。但不同物种之间存在较大差异。在这里,我们报告了 Zn 和 Cd 对 Nicoletia phytophila NpH 1 的影响。我们在潜在的 Zn 配位位点引入突变,并在不同的细胞外 pH 值下测量 Zn 抑制作用,Zn 浓度高达 1000μm。通过减慢激活时间常数和正移电导-电压曲线,定量测量 NpH 1 中的 Zn 抑制作用。用组氨酸 (D145H) 取代 S3-S4 环中的天冬氨酸增强了激活动力学的减慢和电压-电导曲线的移位,使得 Zn 抑制作用与人类通道非常相似。组氨酸在 S3-S4 连接子中比天冬氨酸更有效地协调 Zn。NpH 1 的简单 Hodgkin Huxley 模型表明,如果被锌或镉抑制,其开放率会降低。限制斜率测量和高分辨率清晰 native 凝胶电泳 (hrCNE) 证实 NpH 1 作为二聚体起作用。数据支持 Zn 在二聚体之间而不是单体中配位的假设。Zn 配位位点可能是药物开发的潜在靶点。