Maher Brion S, Brock Guy N
Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
Genet Epidemiol. 2005;29 Suppl 1:S116-9. doi: 10.1002/gepi.20119.
Whether driven by the general lack of success in finding single-gene contributions to complex disease, by increased knowledge about the potential involvement of specific biological interactions in complex disease, or by recent dramatic increases in computational power, a large number of approaches to detect locus x locus interactions were recently proposed and implemented. The six Genetic Analysis Workshop 14 (GAW14) papers summarized here each applied either existing or refined approaches with the goal of detecting gene x gene, or locus x locus, interactions in the GAW14 data. Five of six papers analyzed the simulated data; the other analyzed the Collaborative Study on the Genetics of Alcoholism data. The analytic strategies implemented for detecting interactions included multifactor dimensionality reduction, conditional linkage analysis, nonparametric linkage correlation, two-locus parametric linkage analysis, and a joint test of linkage and association. Overall, most of the groups found limited success in consistently detecting all of the simulated interactions due, in large part, to the nature of the generating model.
无论是由于在寻找复杂疾病的单基因贡献方面普遍缺乏成功,对特定生物相互作用在复杂疾病中潜在参与的认识增加,还是由于最近计算能力的急剧提高,最近都提出并实施了大量检测基因座与基因座相互作用的方法。这里总结的六篇遗传分析研讨会14(GAW14)论文,每篇都应用了现有的或改进的方法,目的是在GAW14数据中检测基因与基因或基因座与基因座的相互作用。六篇论文中有五篇分析了模拟数据;另一篇分析了酒精中毒遗传学合作研究数据。用于检测相互作用的分析策略包括多因素降维、条件连锁分析、非参数连锁相关性、双基因座参数连锁分析以及连锁和关联的联合检验。总体而言,大多数研究小组在持续检测所有模拟相互作用方面取得的成功有限,这在很大程度上是由于生成模型的性质所致。