Suppr超能文献

扩展神经网络2型及其应用。

Extension neural network-type 2 and its applications.

作者信息

Wang Mang-Hui

机构信息

Institute of Information and Electrical Energy, National Chin-Yi Institute of Technology, Taichung, Taiwan, ROC.

出版信息

IEEE Trans Neural Netw. 2005 Nov;16(6):1352-61. doi: 10.1109/TNN.2005.853334.

Abstract

A supervised learning pattern classifier, called the extension neural network (ENN), has been described in a recent paper. In this sequel, the unsupervised learning pattern clustering sibling called the extension neural network type 2 (ENN-2) is proposed. This new neural network uses an extension distance (ED) to measure the similarity between data and the cluster center. It does not require an initial guess of the cluster center coordinates, nor of the initial number of clusters. The clustering process is controlled by a distanced parameter and by a novel extension distance. It shows the same capability as human memory systems to keep stability and plasticity characteristics at the same time, and it can produce meaningful weights after learning. Moreover, the structure of the proposed ENN-2 is simpler and the learning time is shorter than traditional neural networks. Experimental results from five different examples, including three benchmark data sets and two practical applications, verify the effectiveness and applicability of the proposed work.

摘要

最近一篇论文中描述了一种名为扩展神经网络(ENN)的监督学习模式分类器。在本文中,提出了无监督学习模式聚类的同类方法,即扩展神经网络类型2(ENN-2)。这种新的神经网络使用扩展距离(ED)来衡量数据与聚类中心之间的相似度。它既不需要对聚类中心坐标进行初始猜测,也不需要对聚类的初始数量进行猜测。聚类过程由一个距离参数和一个新的扩展距离控制。它展现出与人类记忆系统相同的能力,能够同时保持稳定性和可塑性特征,并且在学习后可以产生有意义的权重。此外,所提出的ENN-2的结构比传统神经网络更简单,学习时间更短。来自五个不同示例的实验结果,包括三个基准数据集和两个实际应用,验证了所提工作的有效性和适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验