Suppr超能文献

脊椎动物中紫外线和紫色色素的三级结构与光谱调谐

Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.

作者信息

Yokoyama Shozo, Starmer William T, Takahashi Yusuke, Tada Takashi

机构信息

Department of Biology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.

出版信息

Gene. 2006 Jan 3;365:95-103. doi: 10.1016/j.gene.2005.09.028. Epub 2005 Dec 15.

Abstract

Many vertebrate species use ultraviolet (UV) vision for such behaviors as mating, foraging, and communication. UV vision is mediated by UV-sensitive visual pigments, which have the wavelengths of maximal absorption (lambda max) at approximately 360 nm, whereas violet (or blue) vision is mediated by orthologous pigments with lambda max values of 390-440 nm. It is widely believed that amino acids in transmembrane (TM) I-III are solely responsible for the spectral tuning of these SWS1 pigments. Recent molecular analyses of SWS1 pigments, however, show that amino acids in TM IV-VII are also involved in the spectral tuning of these pigments through synergistic interactions with those in TM I-III. Comparisons of the tertiary structures of UV and violet pigments reveal that the distance between the counterion E113 in TM III and amino acid sites 87-93 in TM II is narrower for UV pigments than for violet pigments, which may restrict the access of water molecules to the Schiff base pocket and deprotonate the Schiff base nitrogen. Both mutagenesis analyses of E113Q and quantum chemical calculations strongly suggest that unprotonated Schiff base-linked chromophore is responsible for detecting UV light.

摘要

许多脊椎动物利用紫外线(UV)视觉进行交配、觅食和交流等行为。UV视觉由对UV敏感的视觉色素介导,这些色素的最大吸收波长(λmax)约为360nm,而紫光(或蓝光)视觉则由λmax值为390 - 440nm的直系同源色素介导。人们普遍认为,跨膜(TM)I - III中的氨基酸是这些SWS1色素光谱调谐的唯一原因。然而,最近对SWS1色素的分子分析表明,TM IV - VII中的氨基酸也通过与TM I - III中的氨基酸协同相互作用参与了这些色素的光谱调谐。UV和紫光色素三级结构的比较表明,TM III中的抗衡离子E113与TM II中的氨基酸位点87 - 93之间的距离,UV色素比紫光色素更窄,这可能会限制水分子进入席夫碱口袋,并使席夫碱氮去质子化。E113Q的诱变分析和量子化学计算都有力地表明,未质子化的席夫碱连接发色团负责检测紫外线。

相似文献

1
Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
Gene. 2006 Jan 3;365:95-103. doi: 10.1016/j.gene.2005.09.028. Epub 2005 Dec 15.
2
Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.
Photochem Photobiol Sci. 2004 Aug;3(8):713-20. doi: 10.1039/b314693f. Epub 2004 Mar 22.
3
Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
Photochem Photobiol. 2007 Mar-Apr;83(2):303-10. doi: 10.1562/2006-06-27-IR-952.
4
5
Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates.
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8308-13. doi: 10.1073/pnas.1532535100. Epub 2003 Jun 24.
7
Vision in the ultraviolet.
Cell Mol Life Sci. 2001 Oct;58(11):1583-98. doi: 10.1007/PL00000798.
8
Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
Genetics. 2005 Nov;171(3):1153-60. doi: 10.1534/genetics.105.045849. Epub 2005 Aug 3.
9
Regeneration of ultraviolet pigments of vertebrates.
FEBS Lett. 1998 Feb 20;423(2):155-8. doi: 10.1016/s0014-5793(98)00086-6.
10
Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments.
Biochemistry. 2000 Jul 11;39(27):7895-901. doi: 10.1021/bi992776m.

引用本文的文献

1
A key spectral tuning site of UV-sensitive vertebrate non-visual opsin Opn5.
Cell Mol Life Sci. 2025 Sep 2;82(1):334. doi: 10.1007/s00018-025-05879-3.
4
Opsin genes of select treeshrews resolve ancestral character states within Scandentia.
R Soc Open Sci. 2019 Apr 24;6(4):182037. doi: 10.1098/rsos.182037. eCollection 2019 Apr.
5
As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats.
Mol Biol Evol. 2019 Jan 1;36(1):54-68. doi: 10.1093/molbev/msy192.
6
Euarchontan Opsin Variation Brings New Focus to Primate Origins.
Mol Biol Evol. 2016 Apr;33(4):1029-41. doi: 10.1093/molbev/msv346. Epub 2016 Jan 6.
8
Dichromatic vision in a fruit bat with diurnal proclivities: the Samoan flying fox (Pteropus samoensis).
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Dec;200(12):1015-22. doi: 10.1007/s00359-014-0951-x. Epub 2014 Oct 16.
10
A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.
PLoS Genet. 2010 Dec 16;6(12):e1001245. doi: 10.1371/journal.pgen.1001245.

本文引用的文献

1
Elephants and human color-blind deuteranopes have identical sets of visual pigments.
Genetics. 2005 May;170(1):335-44. doi: 10.1534/genetics.104.039511. Epub 2005 Mar 21.
2
Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species.
Mol Biol Evol. 2005 Jun;22(6):1412-22. doi: 10.1093/molbev/msi137. Epub 2005 Mar 16.
3
4
The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.
J Mol Biol. 2004 Sep 10;342(2):571-83. doi: 10.1016/j.jmb.2004.07.044.
7
Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates.
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8308-13. doi: 10.1073/pnas.1532535100. Epub 2003 Jun 24.
8
Gene duplication and spectral diversification of cone visual pigments of zebrafish.
Genetics. 2003 Feb;163(2):663-75. doi: 10.1093/genetics/163.2.663.
9
Molecular evolution of color vision in vertebrates.
Gene. 2002 Oct 30;300(1-2):69-78. doi: 10.1016/s0378-1119(02)00845-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验