Suppr超能文献

酚类微生物转化中的构效关系。

Structure-activity relationships in microbial transformation of phenols.

机构信息

Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30613.

出版信息

Appl Environ Microbiol. 1982 Jul;44(1):153-8. doi: 10.1128/aem.44.1.153-158.1982.

Abstract

The second-order rate constants for the microbial transformation of a series of phenols were correlated with the physicochemical properties of the phenols. The compounds studied were phenol, p-methylphenol, p-chlorophenol, p-bromophenol, p-cyanophenol, p-nitrophenol, p-acetylphenol, and p-methoxyphenol. Phenol-grown cells of Pseudomonas putida U transformed these compounds. Microbial transformation rate constants ranged from (1.5 +/- 0.99) x 10 liter . organism . h for p-cyanophenol to (7.0 +/- 1.3) x 10 liter . organism . h for phenol. Linear regression analyses of rate constants and electronic, steric, and hydrophobic parameters showed that van der Waal's radii gave the best coefficient of determination (r = 0.956). Products identified by thin-layer chromatography and liquid chromatography indicated that the phenols were microbially oxidized to the corresponding catechols.

摘要

一系列酚类化合物的微生物转化的二级速率常数与酚类化合物的物理化学性质相关联。研究的化合物为苯酚、对甲基苯酚、对氯苯酚、对溴苯酚、对氰基苯酚、对硝基苯酚、对乙酰基苯酚和对甲氧基苯酚。恶臭假单胞菌(Pseudomonas putida U)的苯酚生长细胞转化了这些化合物。微生物转化速率常数的范围为:对氰基苯酚的(1.5 ± 0.99)×10 升 。 生物体 。 h 到苯酚的(7.0 ± 1.3)×10 升 。 生物体 。 h 。速率常数和电子、空间和疏水性参数的线性回归分析表明,范德华半径给出了最佳的决定系数(r = 0.956)。通过薄层层析和液相色谱鉴定的产物表明,这些酚类化合物被微生物氧化为相应的邻苯二酚。

相似文献

1
Structure-activity relationships in microbial transformation of phenols.
Appl Environ Microbiol. 1982 Jul;44(1):153-8. doi: 10.1128/aem.44.1.153-158.1982.
2
Effect of phenol molecular structure on bacterial transformation rate constants in pond and river samples.
Appl Environ Microbiol. 1983 Mar;45(3):1153-5. doi: 10.1128/aem.45.3.1153-1155.1983.
3
Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity.
Toxicology. 2002 Aug 1;177(1):39-54. doi: 10.1016/s0300-483x(02)00194-4.
4
Anaerobic biodegradation of phenolic compounds in digested sludge.
Appl Environ Microbiol. 1983 Jul;46(1):50-4. doi: 10.1128/aem.46.1.50-54.1983.
5
Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol.
J Ind Microbiol Biotechnol. 2002 Jun;28(6):316-24. doi: 10.1038/sj/jim/7000249.
6
Relationship between properties of a series of anilines and their transformation by bacteria.
Appl Environ Microbiol. 1987 May;53(5):911-6. doi: 10.1128/aem.53.5.911-916.1987.
8
Degradation of phenol and phenolic compounds by Pseudomonas putida EKII.
Appl Microbiol Biotechnol. 1992 May;37(2):252-9. doi: 10.1007/BF00178180.
9
Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in Pseudomonas putida F1.
Appl Environ Microbiol. 1989 Oct;55(10):2648-52. doi: 10.1128/aem.55.10.2648-2652.1989.
10
Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6.
Appl Microbiol Biotechnol. 2004 May;64(4):486-92. doi: 10.1007/s00253-003-1488-z. Epub 2003 Nov 29.

引用本文的文献

1
Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities.
J Ind Microbiol Biotechnol. 2013 Jan;40(1):11-20. doi: 10.1007/s10295-012-1199-5. Epub 2012 Sep 27.
2
Influence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs.
Appl Environ Microbiol. 1991 Mar;57(3):820-4. doi: 10.1128/aem.57.3.820-824.1991.
3
Kinetic concepts for measuring microbial rate constants: effects of nutrients on rate constants.
Appl Environ Microbiol. 1986 Feb;51(2):221-5. doi: 10.1128/aem.51.2.221-225.1986.
4
Bacterial o-methylation of chloroguaiacols: effect of substrate concentration, cell density, and growth conditions.
Appl Environ Microbiol. 1985 Feb;49(2):279-88. doi: 10.1128/aem.49.2.279-288.1985.
5
Evidence for a terpene-based food chain in the gulf of alaska.
Appl Environ Microbiol. 1984 Nov;48(5):1004-11. doi: 10.1128/aem.48.5.1004-1011.1984.
6
Microbial transformation of esters of chlorinated carboxylic acids.
Appl Environ Microbiol. 1984 Jan;47(1):7-11. doi: 10.1128/aem.47.1.7-11.1984.
7
Effect of phenol molecular structure on bacterial transformation rate constants in pond and river samples.
Appl Environ Microbiol. 1983 Mar;45(3):1153-5. doi: 10.1128/aem.45.3.1153-1155.1983.
8
Relationship between properties of a series of anilines and their transformation by bacteria.
Appl Environ Microbiol. 1987 May;53(5):911-6. doi: 10.1128/aem.53.5.911-916.1987.
9
Alternative nonlinear model for estimating second-order rate coefficients for biodegradation.
Appl Environ Microbiol. 1987 May;53(5):1064-8. doi: 10.1128/aem.53.5.1064-1068.1987.
10
Bacterial O-methylation of halogen-substituted phenols.
Appl Environ Microbiol. 1987 Apr;53(4):839-45. doi: 10.1128/aem.53.4.839-845.1987.

本文引用的文献

1
Catabolism of substituted benzoic acids by streptomyces species.
Appl Environ Microbiol. 1981 Feb;41(2):442-8. doi: 10.1128/aem.41.2.442-448.1981.
3
The metabolism of cresols by species of Pseudomonas.
Biochem J. 1966 Nov;101(2):293-301. doi: 10.1042/bj1010293.
4
Microbial decontamination of parathion and p-nitrophenol in aqueous media.
Appl Microbiol. 1974 Aug;28(2):212-7. doi: 10.1128/am.28.2.212-217.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验