Suppr超能文献

金属对缺氧盐沼沉积物中产甲烷作用、硫酸盐还原作用、二氧化碳产生作用和微生物生物量的影响。

Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments.

机构信息

Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794.

出版信息

Appl Environ Microbiol. 1983 May;45(5):1586-91. doi: 10.1128/aem.45.5.1586-1591.1983.

Abstract

The effects of several metals on microbial methane, carbon dioxide, and sulfide production and microbial ATP were examined in sediments from Spartina alterniflora communities. Anaerobically homogenized sediments were amended with 1,000 ppm (ratio of weight of metal to dry weight of sediment) of various metals. Time courses in controls were similar for CH(4), H(2)S, and CO(2), with short initial lags (0 to 4 h) followed by periods of constant gas production (1 to 2 days) and declining rates thereafter. Comparisons were made between control and experimental assays with respect to initial rates of production (after lag) and overall production. Methane evolution was inhibited both initially and overall by CH(3)HgCl, HgS, and NaAsO(2). A period of initial inhibition was followed by a period of overall stimulation with Hg, Pb, Ni, Cd, and Cu, all as chlorides, and with ZnSO(4), K(2)CrO(4), and K(2)Cr(2)O(7). Production of CO(2) was generally less affected by the addition of metals. Inhibition was noted with NaAsO(2), CH(3)HgCl, and Na(2)MoO(4). Minor stimulation of CO(2) production occurred over the long term with chlorides of Hg, Pb, and Fe. Sulfate reduction was inhibited in the short term by all metals tested and over the long term by all but FeCl(2) and NiCl(2). Microbial biomass was decreased by FeCl(2), K(2)Cr(2)O(7), ZnSO(4), CdCl(2), and CuCl(2) but remained generally unaffected by PbCl(2), HgCl(2), and NiCl(2). Although the majority of metals produced an immediate inhibition of methanogenesis, for several metals this was only a transient phenomenon followed by an overall stimulation. The initial suppression of methanogenesis may be relieved by precipitation, complexation, or transformation of the metal (possibly by methylation), with the subsequent stimulation resulting from a sustained inhibition of competing organisms (e.g., sulfate-reducing bacteria). For several environmentally significant metals, severe metal pollution may substantially alter the flow of carbon in sediments.

摘要

本研究考察了几种金属对互花米草群落沉积物中微生物甲烷、二氧化碳和硫化物产生以及微生物三磷酸腺苷(ATP)的影响。将厌氧均化的沉积物用 1000ppm(金属重量与沉积物干重的比值)的各种金属进行处理。在对照中,CH(4)、H(2)S 和 CO(2) 的时间过程相似,初始短滞后(0 至 4 小时),随后是恒定的气体产生期(1 至 2 天),此后产率下降。对控制组和实验组的初始产率(滞后后)和整体产率进行了比较。CH(3)HgCl、HgS 和 NaAsO(2) 均初始和总体上抑制了甲烷的产生。汞、铅、镍、镉和铜的氯化物以及 ZnSO(4)、K(2)CrO(4) 和 K(2)Cr(2)O(7),最初有一段抑制期,随后是整体刺激期。CO(2)的产生总体上受金属添加的影响较小。NaAsO(2)、CH(3)HgCl 和 Na(2)MoO(4) 均有抑制作用。Hg、Pb 和 Fe 的氯化物长期轻微刺激 CO(2)产生。所有测试的金属在短期内均抑制硫酸盐还原,除了 FeCl(2)和 NiCl(2)外,长期内也抑制硫酸盐还原。微生物生物量受 FeCl(2)、K(2)Cr(2)O(7)、ZnSO(4)、CdCl(2)和 CuCl(2)的抑制,但基本不受 PbCl(2)、HgCl(2)和 NiCl(2)的影响。尽管大多数金属会立即抑制产甲烷作用,但对于几种金属,这种抑制只是一个短暂的现象,随后是整体刺激。产甲烷作用的初始抑制可能通过金属的沉淀、络合或转化(可能通过甲基化)得到缓解,随后的刺激是由于对竞争生物(如硫酸盐还原菌)的持续抑制所致。对于几种具有重要环境意义的金属,严重的金属污染可能会大大改变沉积物中碳的流动。

相似文献

2
Populations of methane-producing bacteria and in vitro methanogenesis in salt marsh and estuarine sediments.
Appl Environ Microbiol. 1980 Apr;39(4):864-71. doi: 10.1128/aem.39.4.864-871.1980.
5
Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments.
Appl Environ Microbiol. 1987 Oct;53(10):2426-34. doi: 10.1128/aem.53.10.2426-2434.1987.
6
Spatial variation and toxicity assessment for heavy metals in sediments of intertidal zone in a typical subtropical estuary (Min River) of China.
Environ Sci Pollut Res Int. 2017 Oct;24(29):23080-23095. doi: 10.1007/s11356-017-9897-1. Epub 2017 Aug 19.
8
Substrates for sulfate reduction and methane production in intertidal sediments.
Appl Environ Microbiol. 1983 Jan;45(1):193-9. doi: 10.1128/aem.45.1.193-199.1983.
9
Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh.
Environ Sci Pollut Res Int. 2017 Dec;24(35):27587-27600. doi: 10.1007/s11356-017-0204-y. Epub 2017 Oct 5.
10
Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal).
Mar Environ Res. 2010 Dec;70(5):358-67. doi: 10.1016/j.marenvres.2010.07.003. Epub 2010 Jul 22.

引用本文的文献

3
Bromeliad catchments as habitats for methanogenesis in tropical rainforest canopies.
Front Microbiol. 2011 Dec 27;2:256. doi: 10.3389/fmicb.2011.00256. eCollection 2011.
4
Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient.
ISME J. 2011 Mar;5(3):543-58. doi: 10.1038/ismej.2010.132. Epub 2010 Sep 2.
5
Investigation of the fate and effects of acetyl cedrene on Capitella teleta and sediment bacterial community.
Ecotoxicology. 2010 Aug;19(6):1046-58. doi: 10.1007/s10646-010-0486-z. Epub 2010 Mar 26.
7
Adaptation of aquatic microbial communities to hg stress.
Appl Environ Microbiol. 1987 Dec;53(12):2725-32. doi: 10.1128/aem.53.12.2725-2732.1987.
8
Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments.
Appl Environ Microbiol. 1987 Oct;53(10):2426-34. doi: 10.1128/aem.53.10.2426-2434.1987.
9
Degassing of Pore Water Methane during Sediment Incubations.
Appl Environ Microbiol. 1985 Jan;49(1):143-7. doi: 10.1128/aem.49.1.143-147.1985.
10
Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr).
Appl Environ Microbiol. 2005 Dec;71(12):7679-89. doi: 10.1128/AEM.71.12.7679-7689.2005.

本文引用的文献

1
Methane production in the interstitial waters of sulfate-depleted marine sediments.
Science. 1974 Sep 27;185(4157):1167-9. doi: 10.1126/science.185.4157.1167.
2
Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments.
Appl Environ Microbiol. 1982 Jun;43(6):1373-9. doi: 10.1128/aem.43.6.1373-1379.1982.
3
Sulfate reduction and methanogenesis in the sediment of a saltmarsh on the East coast of the United kingdom.
Appl Environ Microbiol. 1982 May;43(5):987-96. doi: 10.1128/aem.43.5.987-996.1982.
4
Dynamics of bacterial sulfate reduction in a eutrophic lake.
Appl Environ Microbiol. 1981 Dec;42(6):1029-36. doi: 10.1128/aem.42.6.1029-1036.1981.
8
Biomethylation of toxic elements in the environment.
Science. 1977 Jul 22;197(4301):329-32. doi: 10.1126/science.877556.
9
Energy conservation in chemotrophic anaerobic bacteria.
Bacteriol Rev. 1977 Mar;41(1):100-80. doi: 10.1128/br.41.1.100-180.1977.
10
Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments.
Appl Environ Microbiol. 1977 Feb;33(2):275-81. doi: 10.1128/aem.33.2.275-281.1977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验