Suppr超能文献

[C-木质素]木质纤维素可溶性组分的厌氧降解。

Anaerobic degradation of soluble fractions of [C-lignin]lignocellulose.

机构信息

Environmental Engineering and Science, Department of Civil Engineering, Stanford University, Stanford, California 94305, and Department of Environmental Medicine and Department of Microbiology, New York University Medical Center, New York, New York 10016.

出版信息

Appl Environ Microbiol. 1985 Feb;49(2):345-9. doi: 10.1128/aem.49.2.345-349.1985.

Abstract

[C-lignin]lignocellulose was solubilized by alkaline heat treatment and separated into different molecular size fractions for use as the sole source of carbon in anaerobic enrichment cultures. This study is aimed at determining the fate of low-molecular-weight, polyaromatic lignin derivatives during anaerobic degradation. Gel permeation chromatography was used to preparatively separate the original C-lignin substrate into three component molecular size fractions, each of which was then fed to separate enrichment cultures. Biodegradability was assessed by monitoring total carbon dioxide and methane production, evolution of labeled gases, loss of C-activity from solution, and changes in gel permeation chromatographic elution patterns. Results indicated that the smaller the size of the molecular weight fraction, the more extensive the degradation to gaseous end products. In addition, up to 30% of the entire soluble lignin-derived carbon was anaerobically mineralized to carbon dioxide and methane.

摘要

[C-木质素]木质纤维素通过碱性热处理溶解,并分离成不同分子量的分数,用作厌氧富集培养中碳的唯一来源。本研究旨在确定低分子量、多芳烃木质素衍生物在厌氧降解过程中的命运。凝胶渗透色谱法用于将原始 C-木质素底物制备性地分离成三个组分的分子量分数,然后将每个分数分别进料到单独的富集培养物中。通过监测总二氧化碳和甲烷的产生、标记气体的演化、溶液中 C-活性的损失以及凝胶渗透色谱洗脱模式的变化来评估生物降解性。结果表明,分子量分数越小,降解为气态终产物的程度越大。此外,高达 30%的整个可溶性木质素衍生碳被厌氧矿化为二氧化碳和甲烷。

相似文献

1
Anaerobic degradation of soluble fractions of [C-lignin]lignocellulose.
Appl Environ Microbiol. 1985 Feb;49(2):345-9. doi: 10.1128/aem.49.2.345-349.1985.
2
Thermophilic anaerobic biodegradation of [C]lignin, [C]cellulose, and [C]lignocellulose preparations.
Appl Environ Microbiol. 1985 Oct;50(4):971-6. doi: 10.1128/aem.50.4.971-976.1985.
4
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
5
Effects of pH on Lignin and Cellulose Degradation by Streptomyces viridosporus.
Appl Environ Microbiol. 1986 Aug;52(2):246-50. doi: 10.1128/aem.52.2.246-250.1986.
6
Absence of microbial mineralization of lignin in anaerobic enrichment cultures.
Appl Environ Microbiol. 1983 Sep;46(3):661-5. doi: 10.1128/aem.46.3.661-665.1983.
7
Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.
Appl Environ Microbiol. 1990 Jul;56(7):2213-8. doi: 10.1128/aem.56.7.2213-2218.1990.
9
Degradation of natural and Kraft lignins by the microflora of soil and water.
Can J Microbiol. 1977 Apr;23(4):434-40. doi: 10.1139/m77-064.
10
Aromatic and Volatile Acid Intermediates Observed during Anaerobic Metabolism of Lignin-Derived Oligomers.
Appl Environ Microbiol. 1985 Feb;49(2):350-8. doi: 10.1128/aem.49.2.350-358.1985.

引用本文的文献

3
Anaerobic capacities of leaf litter.
Appl Environ Microbiol. 1996 Nov;62(11):4216-9. doi: 10.1128/aem.62.11.4216-4219.1996.
4
Effect of Manganese on Lignin Degradation by Pleurotus ostreatus during Solid-State Fermentation.
Appl Environ Microbiol. 1993 Dec;59(12):4115-20. doi: 10.1128/aem.59.12.4115-4120.1993.
5
Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium.
Appl Environ Microbiol. 1992 Apr;58(4):1121-7. doi: 10.1128/aem.58.4.1121-1127.1992.
6
Lignin degradation and humus formation in alluvial soils and sediments.
Appl Environ Microbiol. 1989 Apr;55(4):922-6. doi: 10.1128/aem.55.4.922-926.1989.
7
Enzymatic aryl-o-methyl-C labeling of model lignin monomers.
Appl Environ Microbiol. 1986 Jan;51(1):80-3. doi: 10.1128/aem.51.1.80-83.1986.
8
Thermophilic anaerobic biodegradation of [C]lignin, [C]cellulose, and [C]lignocellulose preparations.
Appl Environ Microbiol. 1985 Oct;50(4):971-6. doi: 10.1128/aem.50.4.971-976.1985.
10
Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.
Appl Environ Microbiol. 1985 Dec;50(6):1451-6. doi: 10.1128/aem.50.6.1451-1456.1985.

本文引用的文献

3
Methanogenic decomposition of ferulic Acid, a model lignin derivative.
Appl Environ Microbiol. 1980 Feb;39(2):436-44. doi: 10.1128/aem.39.2.436-444.1980.
4
Anaerobic biodegradation of eleven aromatic compounds to methane.
Appl Environ Microbiol. 1979 Jul;38(1):84-9. doi: 10.1128/aem.38.1.84-89.1979.
5
Measuring radioactive methane with the liquid scintillation counter.
Appl Environ Microbiol. 1979 May;37(5):897-9. doi: 10.1128/aem.37.5.897-899.1979.
7
Microbial degradation of lignocellulose: the lignin component.
Appl Environ Microbiol. 1976 May;31(5):714-7. doi: 10.1128/aem.31.5.714-717.1976.
8
Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium.
Arch Microbiol. 1980 Jan;124(1):1-11. doi: 10.1007/BF00407022.
9
A serum bottle modification of the Hungate technique for cultivating obligate anaerobes.
Appl Microbiol. 1974 May;27(5):985-7. doi: 10.1128/am.27.5.985-987.1974.
10
Degradation of natural and Kraft lignins by the microflora of soil and water.
Can J Microbiol. 1977 Apr;23(4):434-40. doi: 10.1139/m77-064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验