Suppr超能文献

梭菌产溶剂的细胞内条件的启动。

Intracellular Conditions Required for Initiation of Solvent Production by Clostridium acetobutylicum.

机构信息

Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118.

出版信息

Appl Environ Microbiol. 1986 Jul;52(1):86-91. doi: 10.1128/aem.52.1.86-91.1986.

Abstract

We investigated the intracellular physiological conditions associated with the induction of butanol-producing enzymes in Clostridium acetobutylicum. During the acidogenic phase of growth, the internal pH decreased in parallel with the decrease in the external pH, but the internal pH did not go below 5.5 throughout batch growth. Butanol was found to dissipate the proton motive force of fermenting C. acetobutylicum cells by decreasing the transmembrane pH gradient, whereas the membrane potential was affected only slightly. In growing cells, the switch from acid to solvent production occurred when the internal undissociated butyric acid concentration reached 13 mM and the total intracellular undissociated acid concentration (acetic plus butyric acids) was at least 40 to 45 mM. Similar values were obtained when cultures were supplemented with 50 mM butyric acid initially or when a phosphate-buffered medium was used instead of an acetate-buffered medium. To measure the induction of the enzymes involved in solvent synthesis, we determined the rates of conversion of butyrate to butanol in growing cells. The rate of butanol formation reached a maximum in the mid-solvent phase, when the butanol concentration was 50 mM. Although more solvent accumulated later, de novo enzyme synthesis decreased and then ceased.

摘要

我们研究了与丁酸梭菌产丁醇酶诱导相关的细胞内生理条件。在生长的产酸阶段,内部 pH 值随外部 pH 值的降低而降低,但整个分批培养过程中内部 pH 值并未低于 5.5。发现丁醇通过降低跨膜 pH 梯度来耗散发酵丁酸梭菌细胞的质子动力势,而膜电位仅受到轻微影响。在生长细胞中,当内部未离解丁酸浓度达到 13 mM 且总细胞内未离解酸浓度(乙酸加丁酸)至少为 40 至 45 mM 时,从酸到溶剂的转变发生。当最初用 50 mM 丁酸补充培养物或使用磷酸盐缓冲培养基代替乙酸盐缓冲培养基时,也获得了类似的值。为了测量参与溶剂合成的酶的诱导,我们测定了在生长细胞中丁酸转化为丁醇的速率。在溶剂中期,当丁醇浓度达到 50 mM 时,丁醇的形成速率达到最大值。尽管后来积累了更多的溶剂,但新酶的合成减少,然后停止。

相似文献

1
Intracellular Conditions Required for Initiation of Solvent Production by Clostridium acetobutylicum.
Appl Environ Microbiol. 1986 Jul;52(1):86-91. doi: 10.1128/aem.52.1.86-91.1986.
4
Production of Solvents by Clostridium acetobutylicum Cultures Maintained at Neutral pH.
Appl Environ Microbiol. 1984 Dec;48(6):1166-70. doi: 10.1128/aem.48.6.1166-1170.1984.
5
Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum.
Biochimie. 1987 Feb;69(2):109-15. doi: 10.1016/0300-9084(87)90242-2.
6
Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.
Appl Microbiol Biotechnol. 2013 Nov;97(21):9355-63. doi: 10.1007/s00253-013-5161-x. Epub 2013 Sep 8.
8
Effects of butanol on Clostridium acetobutylicum.
Appl Environ Microbiol. 1985 Nov;50(5):1165-70. doi: 10.1128/aem.50.5.1165-1170.1985.
9
Role of Chemotaxis in Solvent Production by Clostridium acetobutylicum.
Appl Environ Microbiol. 1987 Aug;53(8):1924-7. doi: 10.1128/aem.53.8.1924-1927.1987.

引用本文的文献

2
From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation.
Appl Microbiol Biotechnol. 2025 Feb 18;109(1):47. doi: 10.1007/s00253-025-13428-y.
3
Metabolic engineering of Clostridium autoethanogenum for ethyl acetate production from CO.
Microb Cell Fact. 2022 Nov 23;21(1):243. doi: 10.1186/s12934-022-01964-5.
4
Sustainable production of biofuels from the algae-derived biomass.
Bioprocess Biosyst Eng. 2023 Aug;46(8):1077-1097. doi: 10.1007/s00449-022-02796-8. Epub 2022 Nov 4.
5
Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects.
RSC Adv. 2022 Jun 29;12(29):18848-18863. doi: 10.1039/d1ra09396g. eCollection 2022 Jun 22.
6
Proteomic Responses to Butanol Stress.
Front Microbiol. 2021 Jul 21;12:674639. doi: 10.3389/fmicb.2021.674639. eCollection 2021.
8
Sporulation in solventogenic and acetogenic clostridia.
Appl Microbiol Biotechnol. 2021 May;105(9):3533-3557. doi: 10.1007/s00253-021-11289-9. Epub 2021 Apr 26.
9
Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis.
Biotechnol Biofuels. 2019 Jun 28;12:167. doi: 10.1186/s13068-019-1508-6. eCollection 2019.

本文引用的文献

2
Phosphotransferase Activity in Clostridium acetobutylicum from Acidogenic and Solventogenic Phases of Growth.
Appl Environ Microbiol. 1986 May;51(5):1121-3. doi: 10.1128/aem.51.5.1121-1123.1986.
3
Immobilized Clostridium acetobutylicum P262 Mutants for Solvent Production.
Appl Environ Microbiol. 1985 Aug;50(2):477-81. doi: 10.1128/aem.50.2.477-481.1985.
4
Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids.
Appl Environ Microbiol. 1985 Mar;49(3):522-9. doi: 10.1128/aem.49.3.522-529.1985.
5
Production of Solvents by Clostridium acetobutylicum Cultures Maintained at Neutral pH.
Appl Environ Microbiol. 1984 Dec;48(6):1166-70. doi: 10.1128/aem.48.6.1166-1170.1984.
6
Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum.
Appl Environ Microbiol. 1984 Dec;48(6):1134-9. doi: 10.1128/aem.48.6.1134-1139.1984.
8
Formation of n-Butanol from d-Glucose by Strains of the "Clostridium tetanomorphum" Group.
Appl Environ Microbiol. 1984 Sep;48(3):573-6. doi: 10.1128/aem.48.3.573-576.1984.
9
Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate.
Appl Environ Microbiol. 1984 Jun;47(6):1277-83. doi: 10.1128/aem.47.6.1277-1283.1984.
10
Acidic Conditions Are Not Obligatory for Onset of Butanol Formation by Clostridium beijerinckii (Synonym, C. butylicum).
Appl Environ Microbiol. 1983 Aug;46(2):321-7. doi: 10.1128/aem.46.2.321-327.1983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验