Suppr超能文献

一株阴沟肠杆菌在厌氧条件下还原六价铬的分离及特性研究。

Isolation and Characterization of an Enterobacter cloacae Strain That Reduces Hexavalent Chromium under Anaerobic Conditions.

机构信息

Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Tokyo 113, and Department of Microbiology, Tokyo College of Pharmacy, Tokyo 192-03, Japan.

出版信息

Appl Environ Microbiol. 1989 Jul;55(7):1665-9. doi: 10.1128/aem.55.7.1665-1669.1989.

Abstract

An Enterobacter cloacae strain (HO1) capable of reducing hexavalent chromium (chromate) was isolated from activated sludge. This bacterium was resistant to chromate under both aerobic and anaerobic conditions. Only the anaerobic culture of the E. cloacae isolate showed chromate reduction. In the anaerobic culture, yellow turned white with chromate and the turbidity increased as the reduction proceeded, suggesting that insoluble chromium hydroxide was formed. E. cloacae is likely to utilize toxic chromate as an electron acceptor anaerobically because (i) the anaerobic growth of E. cloacae HO1 accompanied the decrease of toxic chromate in culture medium, (ii) the chromate-reducing activity was rapidly inhibited by oxygen, and (iii) the reduction occurred more rapidly in glycerol- or acetate-grown cells than in glucose-grown cells. The chromate reduction in E. cloacae HO1 was observed at pH 6.0 to 8.5 (optimum pH, 7.0) and at 10 to 40 degrees C (optimum, 30 degrees C).

摘要

从活性污泥中分离到一株能够还原六价铬(铬酸盐)的阴沟肠杆菌(HO1)菌株。该细菌在需氧和厌氧条件下均对铬酸盐具有抗性。只有阴沟肠杆菌分离物的厌氧培养显示出铬酸盐还原。在厌氧培养中,随着还原的进行,铬酸盐使黄色变为白色,浊度增加,表明形成了不溶性氢氧化铬。阴沟肠杆菌很可能利用有毒的铬酸盐作为电子受体进行厌氧呼吸,因为:(i)阴沟肠杆菌 HO1 的厌氧生长伴随着培养基中有毒铬酸盐的减少;(ii)氧迅速抑制了铬酸盐还原活性;(iii)在甘油或乙酸盐生长的细胞中比在葡萄糖生长的细胞中还原发生得更快。在 pH 值为 6.0 到 8.5(最佳 pH 值为 7.0)和 10 到 40 摄氏度(最佳温度为 30 摄氏度)的条件下观察到阴沟肠杆菌 HO1 中的铬酸盐还原。

相似文献

1
Isolation and Characterization of an Enterobacter cloacae Strain That Reduces Hexavalent Chromium under Anaerobic Conditions.
Appl Environ Microbiol. 1989 Jul;55(7):1665-9. doi: 10.1128/aem.55.7.1665-1669.1989.
2
Chromate-resistance in a chromate-reducing strain of Enterobacter cloacae.
FEMS Microbiol Lett. 1990 Jan 15;55(1-2):85-8. doi: 10.1016/0378-1097(90)90173-n.
4
Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate.
FEMS Microbiol Lett. 1991 Feb;62(1):11-5. doi: 10.1016/0378-1097(91)90246-7.
5
Membrane-associated chromate reductase activity from Enterobacter cloacae.
J Bacteriol. 1990 Mar;172(3):1670-2. doi: 10.1128/jb.172.3.1670-1672.1990.
7
Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae.
Biotechnol Bioeng. 1993 Jan 5;41(1):129-33. doi: 10.1002/bit.260410117.
9
Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site.
Environ Microbiol. 2000 Dec;2(6):611-9. doi: 10.1046/j.1462-2920.2000.00143.x.

引用本文的文献

1
Remediation Approaches to Reduce Hydrocarbon Contamination in Petroleum-Polluted Soil.
Microorganisms. 2023 Oct 17;11(10):2577. doi: 10.3390/microorganisms11102577.
2
Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity.
Int J Environ Res Public Health. 2020 Aug 19;17(17):6013. doi: 10.3390/ijerph17176013.
3
The effect of electron competition on chromate reduction using methane as electron donor.
Environ Sci Pollut Res Int. 2018 Mar;25(7):6609-6618. doi: 10.1007/s11356-017-0937-7. Epub 2017 Dec 19.
6
Effects of Incubation Conditions on Cr(VI) Reduction by c-type Cytochromes in Intact Shewanella oneidensis MR-1 Cells.
Front Microbiol. 2016 May 19;7:746. doi: 10.3389/fmicb.2016.00746. eCollection 2016.
8
Inhibitory and stimulating effect of single and multi-metal ions on hexavalent chromium reduction by Acinetobacter sp. Cr-B2.
World J Microbiol Biotechnol. 2014 Dec;30(12):3211-9. doi: 10.1007/s11274-014-1748-3. Epub 2014 Oct 8.
9
Chromium (VI) remediation by a native strain: effect of environmental conditions and removal mechanisms involved.
Environ Sci Pollut Res Int. 2014 Dec;21(23):13551-9. doi: 10.1007/s11356-014-3311-z. Epub 2014 Jul 16.
10
Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden.
Braz J Microbiol. 2013 May 31;44(1):307-15. doi: 10.1590/S1517-83822013000100045. eCollection 2013.

本文引用的文献

1
Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor.
Science. 1988 Jun 3;240(4857):1319-21. doi: 10.1126/science.240.4857.1319.
2
Enzymatic reduction of iron oxide by fungi.
Appl Microbiol. 1969 Jul;18(1):41-3. doi: 10.1128/am.18.1.41-43.1969.
3
Bacteriology of manganese nodules: III. Reduction of MnO(2) by two strains of nodule bacteria.
Appl Microbiol. 1968 May;16(5):695-702. doi: 10.1128/am.16.5.695-702.1968.
4
ENZYMATIC REDUCTION OF SELENITE.
J Bacteriol. 1963 Apr;85(4):763-71. doi: 10.1128/jb.85.4.763-771.1963.
5
Complete reduction of tellurite to pure tellurium metal by microorganisms.
J Bacteriol. 1962 Jun;83(6):1313-4. doi: 10.1128/jb.83.6.1313-1314.1962.
6
Tellurite reductase from Mycobacterium avium.
J Bacteriol. 1958 May;75(5):535-9. doi: 10.1128/jb.75.5.535-539.1958.
7
Chromate resistance plasmid in Pseudomonas fluorescens.
J Bacteriol. 1983 Sep;155(3):1105-9. doi: 10.1128/jb.155.3.1105-1109.1983.
8
Mutagenicity of chromates in bacteria and its relevance to chromate carcinogenesis.
Nature. 1974 Aug 9;250(5466):493-5. doi: 10.1038/250493a0.
9
Detection of selenium deposits in Escherichia coli by electron microscopy.
J Bacteriol. 1974 Sep;119(3):1057-60. doi: 10.1128/jb.119.3.1057-1060.1974.
10
Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8.
J Bacteriol. 1988 Jul;170(7):3269-73. doi: 10.1128/jb.170.7.3269-3273.1988.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验