Suppr超能文献

运动性和吸附速率系数对细菌在饱和多孔介质中传输的影响。

Effects of Motility and Adsorption Rate Coefficient on Transport of Bacteria through Saturated Porous Media.

机构信息

Center for Interfacial Microbial Process Engineering, Montana State University, Bozeman, Montana 59717.

出版信息

Appl Environ Microbiol. 1993 Oct;59(10):3455-62. doi: 10.1128/aem.59.10.3455-3462.1993.

Abstract

Three strains of Pseudomonas fluorescens with different motility rates and adsorption rate coefficients were injected into porous-medium reactors packed with l-mm-diameter glass spheres. Cell breakthrough, time to peak concentration, tailing, and cell recovery were measured at three interstitial pore velocities (higher than, lower than, and much lower than the maximal bacterial motility rate). All experiments were done with distilled water to reduce the effects of growth and chemotaxis. Contrary to expectations, motility did not result in either early breakthrough or early time to peak concentration at flow velocities below the motility rate. Bacterial size exclusion effects were shown to affect breakthrough curve shape at the very low flow velocity, but no such effect was seen at the higher flow velocity. The tendency of bacteria to adsorb to porous-medium surfaces, as measured by adsorption rate coefficients, profoundly influenced transport characteristics. Cell recoveries were shown to be correlated with the ratio of advective to adsorptive transport in the reactors. Adsorption rate coefficients were found to be better predictors of microbial transport phenomena than individual characteristics, such as size, motility, or porous-medium hydrodynamics.

摘要

三种不同运动速率和吸附速率系数的荧光假单胞菌菌株被注入填充有 1 毫米直径玻璃珠的多孔介质反应器中。在三个孔隙速度(高于、低于和远低于最大细菌运动速率)下测量细胞突破、达到峰值浓度的时间、尾部和细胞回收。所有实验均使用蒸馏水进行,以减少生长和趋化性的影响。与预期相反,在流速低于运动速率的情况下,运动并没有导致早期突破或早期达到峰值浓度。细菌大小排除效应在非常低的流速下影响突破曲线形状,但在较高的流速下没有观察到这种效应。细菌对多孔介质表面的吸附倾向,如吸附速率系数所测量的,深刻地影响了传输特性。细胞回收率与反应器中推流和吸附传输的比值相关。吸附速率系数被发现比单个特征(如大小、运动性或多孔介质流体动力学)更好地预测微生物传输现象。

相似文献

1
Effects of Motility and Adsorption Rate Coefficient on Transport of Bacteria through Saturated Porous Media.
Appl Environ Microbiol. 1993 Oct;59(10):3455-62. doi: 10.1128/aem.59.10.3455-3462.1993.
2
Effect of gravity on colloidal particle transport in a saturated porous medium: Analytical solutions and experiments.
PLoS One. 2022 Oct 5;17(10):e0275644. doi: 10.1371/journal.pone.0275644. eCollection 2022.
3
Centrifuge modeling of air sparging - a study of air flow through saturated porous media.
J Hazard Mater. 2000 Feb 25;72(2-3):179-215. doi: 10.1016/s0304-3894(99)00140-5.
4
Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater.
J Contam Hydrol. 2004 Apr;69(3-4):195-213. doi: 10.1016/j.jconhyd.2003.08.001.
5
Idling time of motile bacteria contributes to retardation and dispersion in sand porous medium.
Environ Sci Technol. 2011 May 1;45(9):3945-51. doi: 10.1021/es104041t. Epub 2011 Apr 1.
6
Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.
J Environ Sci (China). 2014 Dec 1;26(12):2554-61. doi: 10.1016/j.jes.2014.06.034. Epub 2014 Oct 14.
7
Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.
J Environ Sci (China). 2017 Mar;53:161-172. doi: 10.1016/j.jes.2016.01.032. Epub 2016 Jun 5.
8
Glass micromodel study of bacterial dispersion in spatially periodic porous networks.
Biotechnol Bioeng. 2002 Jun 5;78(5):556-66. doi: 10.1002/bit.10236.
10
Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale.
J R Soc Interface. 2020 Mar;17(164):20200046. doi: 10.1098/rsif.2020.0046. Epub 2020 Mar 25.

引用本文的文献

2
In-Plane Rotation of Prolate Colloids Adhered to a Planar Substrate in the Presence of Flow.
Langmuir. 2023 May 9;39(18):6487-6494. doi: 10.1021/acs.langmuir.3c00433. Epub 2023 Apr 25.
4
Corner Flows Induced by Surfactant-Producing Bacteria Bacillus subtilis and Pseudomonas fluorescens.
Microbiol Spectr. 2022 Oct 26;10(5):e0323322. doi: 10.1128/spectrum.03233-22. Epub 2022 Oct 10.
5
Coupled Effects of Pore Water Velocity and Soil Heterogeneity on Bacterial Transport: Intact vs. Repacked Soils.
Front Microbiol. 2022 Feb 21;13:730075. doi: 10.3389/fmicb.2022.730075. eCollection 2022.
6
Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut.
Front Microbiol. 2016 Oct 13;7:1600. doi: 10.3389/fmicb.2016.01600. eCollection 2016.
7
Influence of 3-Chloroaniline on the Biofilm Lifestyle of Comamonas testosteroni and Its Implications on Bioaugmentation.
Appl Environ Microbiol. 2016 Jun 30;82(14):4401-4409. doi: 10.1128/AEM.00874-16. Print 2016 Jul 15.
8
Nitrogen starvation affects bacterial adhesion to soil.
Braz J Microbiol. 2008 Jul;39(3):457-63. doi: 10.1590/S1517-83822008000300009. Epub 2008 Sep 1.
9
Pore water transport of enterococci out of beach sediments.
Mar Pollut Bull. 2011 Nov;62(11):2293-8. doi: 10.1016/j.marpolbul.2011.08.049. Epub 2011 Sep 25.

本文引用的文献

1
Relationship between Cell Surface Properties and Transport of Bacteria through Soil.
Appl Environ Microbiol. 1991 Jan;57(1):190-3. doi: 10.1128/aem.57.1.190-193.1991.
2
Nutrient resuscitation and growth of starved cells in sandstone cores: a novel approach to enhanced oil recovery.
Appl Environ Microbiol. 1988 Jun;54(6):1373-82. doi: 10.1128/aem.54.6.1373-1382.1988.
3
Plugging of a model rock system by using starved bacteria.
Appl Environ Microbiol. 1988 Jun;54(6):1365-72. doi: 10.1128/aem.54.6.1365-1372.1988.
4
Microbial Penetration through Nutrient-Saturated Berea Sandstone.
Appl Environ Microbiol. 1985 Aug;50(2):383-91. doi: 10.1128/aem.50.2.383-391.1985.
5
Starvation-induced effects on bacterial surface characteristics.
Appl Environ Microbiol. 1984 Sep;48(3):497-503. doi: 10.1128/aem.48.3.497-503.1984.
6
Mechanisms of microbial movement in subsurface materials.
Appl Environ Microbiol. 1989 Sep;55(9):2280-6. doi: 10.1128/aem.55.9.2280-2286.1989.
7
Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity.
Appl Environ Microbiol. 1990 Mar;56(3):788-95. doi: 10.1128/aem.56.3.788-795.1990.
8
Effect of sodium chloride on transport of bacteria in a saturated aquifer material.
Appl Environ Microbiol. 1991 Sep;57(9):2497-501. doi: 10.1128/aem.57.9.2497-2501.1991.
9
Physical and chemical factors influencing transport of microorganisms through porous media.
Appl Environ Microbiol. 1991 Sep;57(9):2473-81. doi: 10.1128/aem.57.9.2473-2481.1991.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验