Cabria I, López M J, Alonso J A
Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47005 Valladolid, Spain.
J Chem Phys. 2005 Nov 22;123(20):204721. doi: 10.1063/1.2125727.
Density-functional calculations of the adsorption of molecular hydrogen on a planar graphene layer and on the external surface of a (4,4) carbon nanotube, undoped and doped with lithium, have been carried out. Hydrogen molecules are physisorbed on pure graphene and on the nanotube with binding energies about 80-90 meV/molecule. However, the binding energies increase to 160-180 meV/molecule for many adsorption configurations of the molecule near a Li atom in the doped systems. A charge-density analysis shows that the origin of the increase in binding energy is the electronic charge transfer from the Li atom to graphene and the nanotube. The results support and explain qualitatively the enhancement of the hydrogen storage capacity observed in some experiments of hydrogen adsorption on carbon nanotubes doped with alkali atoms.
已经对分子氢在平面石墨烯层以及未掺杂和锂掺杂的(4,4)碳纳米管外表面上的吸附进行了密度泛函计算。氢分子以约80 - 90 meV/分子的结合能物理吸附在纯石墨烯和纳米管上。然而,在掺杂体系中,对于靠近锂原子的分子的许多吸附构型,结合能增加到160 - 180 meV/分子。电荷密度分析表明,结合能增加的原因是电子从锂原子转移到石墨烯和纳米管。这些结果定性地支持并解释了在一些碱原子掺杂的碳纳米管氢吸附实验中观察到的储氢容量增强现象。