Baierle Rogério J, Piquini Paulo, Schmidt Tomé M, Fazzio Adalberto
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
J Phys Chem B. 2006 Oct 26;110(42):21184-8. doi: 10.1021/jp061587s.
The adsorption of atomic and molecular hydrogen on carbon-doped boron nitride nanotubes is investigated within the ab initio density functional theory. The binding energy of adsorbed hydrogen on carbon-doped boron nitride nanotube is substantially increased when compared with hydrogen on nondoped nanotube. These results are in agreement with experimental results for boron nitride nanotubes (BNNT) where dangling bonds are present. The atomic hydrogen makes a chemical covalent bond with carbon substitution, while a physisorption occurs for the molecular hydrogen. For the H(2) molecule adsorbed on the top of a carbon atom in a boron site (BNNT + C(B)-H(2)), a donor defect level is present, while for the H(2) molecule adsorbed on the top of a carbon atom in a nitrogen site (BNNT + C(N)-H(2)), an acceptor defect level is present. The binding energies of H(2) molecules absorbed on carbon-doped boron nitride nanotubes are in the optimal range to work as a hydrogen storage medium.
采用从头算密度泛函理论研究了原子氢和分子氢在碳掺杂氮化硼纳米管上的吸附情况。与未掺杂纳米管上的氢相比,碳掺杂氮化硼纳米管上吸附氢的结合能显著增加。这些结果与存在悬空键的氮化硼纳米管(BNNT)的实验结果一致。原子氢与碳取代形成化学共价键,而分子氢则发生物理吸附。对于吸附在硼位点碳原子顶部的H(2)分子(BNNT + C(B)-H(2)),存在施主缺陷能级,而对于吸附在氮位点碳原子顶部的H(2)分子(BNNT + C(N)-H(2)),存在受主缺陷能级。吸附在碳掺杂氮化硼纳米管上的H(2)分子的结合能处于作为储氢介质的最佳范围内。