Campisi Michele, Accoto Dino, Dario Paolo
Center of Research in Microengineering (CRIM) Laboratory, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera (Pisa), Italy.
J Chem Phys. 2005 Nov 22;123(20):204724. doi: 10.1063/1.2124688.
Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects.
由于交流电渗作为一种可靠的无移动部件策略,用于控制生物医学应用(如芯片实验室)微流控设备中的流体运动,人们对此兴趣日益浓厚,我们研究了无限延伸的矩形带电微通道中的瞬态和稳态电动现象(电渗和流动电流)。借助傅里叶级数和拉普拉斯变换,我们给出了该问题的一般形式解,用于研究有限电双层情况下对突然施加的交流电压差的时间相关响应。采用德拜 - 休克尔近似以得到傅里叶空间中泊松 - 玻尔兹曼问题的代数解。我们得到了流速分布、流量、流动电流的表达式,以及复水力和电动导率的表达式。我们详细分析了电动导率相对于德拜长度的线性尺寸扩展的依赖性,着眼于有限电双层效应。