Haupt Melina, Bramkamp Marc, Heller Markus, Coles Murray, Deckers-Hebestreit Gabriele, Herkenhoff-Hesselmann Brigitte, Altendorf Karlheinz, Kessler Horst
Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
J Biol Chem. 2006 Apr 7;281(14):9641-9. doi: 10.1074/jbc.M508290200. Epub 2005 Dec 14.
P-type ATPases are ubiquitously abundant enzymes involved in active transport of charged residues across biological membranes. The KdpB subunit of the prokaryotic Kdp-ATPase (KdpFABC complex) shares characteristic regions of homology with class II-IV P-type ATPases and has been shown previously to be misgrouped as a class IA P-type ATPase. Here, we present the NMR structure of the AMP-PNP-bound nucleotide binding domain KdpBN of the Escherichia coli Kdp-ATPase at high resolution. The aromatic moiety of the nucleotide is clipped into the binding pocket by Phe(377) and Lys(395) via a pi-pi stacking and a cation-pi interaction, respectively. Charged residues at the outer rim of the binding pocket (Arg(317), Arg(382), Asp(399), and Glu(348)) stabilize and direct the triphosphate group via electrostatic attraction and repulsion toward the phosphorylation domain. The nucleotide binding mode was corroborated by the replacement of critical residues. The conservative mutation F377Y produced a high residual nucleotide binding capacity, whereas replacement by alanine resulted in low nucleotide binding capacities and a considerable loss of ATPase activity. Similarly, mutation K395A resulted in loss of ATPase activity and nucleotide binding affinity, even though the protein was properly folded. We present a schematic model of the nucleotide binding mode that allows for both high selectivity and a low nucleotide binding constant, necessary for the fast and effective turnover rate realized in the reaction cycle of the Kdp-ATPase.
P型ATP酶是普遍存在且含量丰富的酶,参与带电残基跨生物膜的主动运输。原核Kdp - ATP酶(KdpFABC复合物)的KdpB亚基与II - IV类P型ATP酶具有同源特征区域,并且先前已被证明被错误归类为IA类P型ATP酶。在此,我们展示了大肠杆菌Kdp - ATP酶的与AMP - PNP结合的核苷酸结合结构域KdpBN的高分辨率核磁共振结构。核苷酸的芳香部分分别通过π - π堆积和阳离子 - π相互作用被苯丙氨酸(Phe(377))和赖氨酸(Lys(395))夹入结合口袋。结合口袋外缘的带电残基(精氨酸(Arg(317))、精氨酸(Arg(382))、天冬氨酸(Asp(399))和谷氨酸(Glu(348)))通过静电吸引和排斥稳定并引导三磷酸基团朝向磷酸化结构域。通过关键残基的替换证实了核苷酸结合模式。保守突变F377Y产生了较高的残余核苷酸结合能力,而被丙氨酸替换则导致低核苷酸结合能力和ATP酶活性的显著丧失。同样,突变K395A导致ATP酶活性和核苷酸结合亲和力丧失,尽管蛋白质折叠正确。我们提出了一种核苷酸结合模式的示意图模型,该模型允许高选择性和低核苷酸结合常数,这对于Kdp - ATP酶反应循环中实现快速有效的周转速率是必要的。