Suppr超能文献

大肠杆菌KdpFABC P型ATP酶中KdpB跨膜螺旋5中的保守偶极子对于偶联和电致K⁺转运步骤至关重要。

The conserved dipole in transmembrane helix 5 of KdpB in the Escherichia coli KdpFABC P-type ATPase is crucial for coupling and the electrogenic K+-translocation step.

作者信息

Becker Doris, Fendler Klaus, Altendorf Karlheinz, Greie Jörg-Christian

机构信息

Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany.

出版信息

Biochemistry. 2007 Dec 4;46(48):13920-8. doi: 10.1021/bi701394h. Epub 2007 Nov 10.

Abstract

The KdpFABC complex of Escherichia coli, a high-affinity K+-uptake system, belongs to the group of P-type ATPases and is responsible for ATP-driven K+ uptake in the case of K+ limitation. Sequence alignments identified two conserved charged residues, D583 and K586, which are located at the center of transmembrane helix 5 (TM 5) of the catalytic KdpB subunit, and which are supposed to establish a dipole involved in energy coupling. Cells in which the two charges were eliminated or inverted by mutagenesis displayed a clearly slower growth rate with respect to wild-type cells under K+-limiting conditions. Purified KdpFABC complexes from several K586 mutants and a D583K:K586D double mutant showed a reduced K+-stimulated ATPase activity together with an increased resistance to orthovanadate. Upon reconstitution into liposomes, only the conservative K586R mutant was able to facilitate K+ transport, whereas the elimination of the positive charge at position 586 as well as inverting the charges at positions 583 and 586 (D583K:K586D) led to an uncoupling of ATP hydrolysis and K+ transport. Electrophysiological measurements with KdpFABC-containing proteoliposomes adsorbed to planar lipid bilayers revealed that in case of the D583K:K586D double mutant the characteristic K+-independent electrogenic step within the reaction cycle is lacking, thereby clearly arguing for an exact positioning of the dipole for coupling within the functional enzyme complex. In addition, these findings strongly suggest that the dipole residues in KdpB are not directly responsible for the characteristic electrogenic reaction step of KdpFABC, which most likely occurs within the K+-translocating KdpA subunit.

摘要

大肠杆菌的KdpFABC复合体是一种高亲和力钾离子摄取系统,属于P型ATP酶家族,在钾离子受限的情况下负责ATP驱动的钾离子摄取。序列比对确定了两个保守的带电残基D583和K586,它们位于催化性KdpB亚基的跨膜螺旋5(TM 5)中心,被认为可形成参与能量偶联的偶极子。通过诱变消除或反转这两个电荷的细胞,在钾离子限制条件下相对于野生型细胞显示出明显较慢的生长速度。从几个K586突变体和一个D583K:K586D双突变体中纯化得到的KdpFABC复合体,显示出钾离子刺激的ATP酶活性降低,同时对正钒酸盐的抗性增加。重新组装到脂质体后,只有保守的K586R突变体能够促进钾离子转运,而消除586位的正电荷以及反转583和586位的电荷(D583K:K586D)导致ATP水解和钾离子转运解偶联。对吸附在平面脂质双分子层上的含KdpFABC的蛋白脂质体进行电生理测量表明,对于D583K:K586D双突变体,反应循环中缺乏特征性的非钾离子依赖性电生成步骤,从而明确支持偶极子在功能性酶复合物中进行偶联的精确定位。此外,这些发现强烈表明,KdpB中的偶极子残基并非KdpFABC特征性电生成反应步骤的直接原因,该步骤很可能发生在钾离子转运的KdpA亚基内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验